
Information and Process Modeling for Simulation
– Part II: Activities and Processing Networks

button

Activities and Processing Networks

Gerd Wagner G.Wagner@b-tu.de

This tutorial article is Part II of a series of three articles starting with Information and Process Modeling for
Simulation – Part I: Objects and Events.

Copyright © 2019-2020 Gerd Wagner (CC BY-NC)

Published 2020-09-17. Also available as PDF.

Abstract

This article (1) reports new research results in the area of business process modeling and simulation, and (2)
shows, in the style of a tutorial, how to use UML Class Diagrams and DPMN Process Diagrams for modeling
Activities and Processing Networks. The state structure of a system is captured by a UML Class Diagram,
which defines the types of objects, events and activities underlying a DPMN Process Diagram that captures
the dynamics of the system in the form of a set of event rules. Part I of the tutorial presents the Object Event

mailto:G.Wagner@b-tu.de
https://articles.jsime.org/1/1
https://articles.jsime.org/1/1
https://creativecommons.org/licenses/by-nc/4.0/
Activities_files/Activities.pdf

Modeling (OEM) paradigm and a basic OEM approach for modeling discrete event simulations based on
Objects and Events with UML Class Diagrams and DPMN Process Diagrams. In this second part, the basic
OEM approach is extended by considering Activities and Processing Networks. Part III will show how to add
the modeling concepts of Agents with Perceptions, Actions and Beliefs, resulting in a general agent-based
Discrete Event Simulation modeling framework.

Information and Process Modeling for Simulation

– Part II: Activities and Processing Networks

Table of Contents

List of Figures ... ii

List of Tables ... iv

1. Introduction ... 1
1.1. Object Event Modeling .. 1
1.2. Ontological Considerations .. 5
1.3. Object Event Simulation .. 6

2. Simple Activities ... 10
2.1. Conceptual Modeling of Simple Activities ... 10
2.2. Design Modeling of Simple Activities .. 11

3. Resource-Constrained Activities ... 14
3.1. Conceptual Modeling of Resource-Constrained Activities ... 16
3.2. Resource-Constrained Activities in Simulation Design Models .. 26
3.3. The Allocate-Release Modeling Pattern .. 35

4. Processing Activities and Processing Networks ... 40
4.1. Conceptual Modeling of Processing Networks ... 42
4.2. Processing Network Design Models .. 43
4.3. Proprietary terminologies and diagram languages ... 46

5. Transformation Activities ... 48

Acknowledgements .. i

Bibliography .. ii

Appendix A: OEM Elements .. iii

Index ... iv

 i

Information and Process Modeling for Simulation

– Part II: Activities and Processing Networks

List of Figures

1-1. A conceptual information model of a manufacturing workstation system .. 2

1-2. A conceptual process model of a manufacturing workstation system .. 2

1-3. An information design model ... 3

1-4. A process design model in the form of a DPMN Process Diagram ... 4

1-5. An ontology of the core categories of individuals of the OEM&S paradigm ... 5

1-6. A model of the core classes of individuals an OE simulator has to deal with at runtime. 6

2-1. Introducing an activity type in a conceptual information model of a single workstation system. 10

2-2. Introducing an activity type in a conceptual process model of a single workstation system. 10

2-3. Going from basic OEM to OEM-A class models by introducing activity types. .. 11

2-4. Going from basic DPMN to DPMN-A process models by introducing Activity rectangles. 12

2-5. Allocating and re-allocating the workstation as a resource of Processing activities 13

3-1. The resources required for performing an activity include the activity's performer. 15

3-2. Activity types may have special properties representing resource roles. .. 16

3-3. A conceptual information model of the activity type "examinations" with resource roles. 17

3-4. Adding two resource pools for medical departments. ... 18

3-5. A conceptual process model based on the information model of Figure 3-4. .. 19

3-6. A conceptual information model with doctors and patients as people. ... 20

3-7. Adding the activity type "walks to room" to the conceptual information model. 21

3-8. A conceptual process model based on the information model of Figure 3-7. .. 22

3-9. An improved process model based on the information model of Figure 3-7. .. 23

3-10. Displaying the process owner and activity performers in a conceptual process model. 25

3-11. Adding parallel participation multiplicities for rooms participating both in walks and examinations at the
same time. ... 26

3-12. An information model for the simplified design with the resource counters nmrOfRooms and
nmrOfDoctors. ... 27

3-13. A process design model based on the information design model of Figure 3-12. 28

3-14. An OEM-A class model with resource object types for modeling resource roles and pools. 29

3-15. A process design model based on the information design model of Figure 3-14. 30

3-16. Any resource type R extends the pre-defined object type Resource .. 30

3-17. A simplified version of the model of Figure 3-14 ... 31

3-18. An OEM class diagram modeling a single workstation system with resource-constrained processing
activities ... 32

3-19. An information design model for decoupling the allocation of rooms and doctors. 33

3-20. A process design model based on the information design model of Figure 3-19. 33

3-21. Representing the process owner as a Pool and activity performers as Lanes in a process design model.
... 34

3-22. A conceptual modeling pattern for a sequence of resource-constrained activities 35

3-23. Using resource-dependent activity start arrows in a conceptual process model. 36

 ii

Information and Process Modeling for Simulation

– Part II: Activities and Processing Networks

3-24. Displaying the implicit allocate-release steps. .. 37

3-25. Modeling WorkStation as a resource type .. 37

3-26. A simplified version of the workstation process model using a resource-dependent activity start arrow.
... 38

3-27. A simplified version of the medical department information model with Doctor and Room as resource
types ... 38

3-28. A simplified version of the medical department process model using resource-dependent scheduling
arrows. ... 39

4-1. Resource-constrained activities involving processing objects are processing activities. 40

4-2. A conceptual OEM class model defining built-in types for conceptual PN modeling 42

4-3. A PN model using the new DPMN modeling elements of PN Node rectangles and PN Flow arrows 43

4-4. A DPMN-PN process diagram with an Event Scheduling arrow ... 43

4-5. An OEM class design model defining built-in types for making PN design models 44

4-6. A PN model of a workstation system using PN Node rectangles and PN Flow arrows 45

4-7. A PN model of a workstation system where parts may have to be reworked ... 45

4-8. A PN model using the new DPMN modeling elements of PN Node rectangles and PN Flow arrows 45

4-9. An Arena diagram for the DMV model .. 46

4-10. An AnyLogic diagram for the DMV model (imposing Java naming syntax) ... 47

 iii

Information and Process Modeling for Simulation

– Part II: Activities and Processing Networks

List of Tables

4-1. Comparison of different terminologies used for the same PN modeling concepts. 46

 iv

Information and Process Modeling for Simulation

– Part II: Activities and Processing Networks

Chapter 1. Introduction

Object Event (OE) Modeling and Simulation (M&S) is a new general Discrete Event Simulation (DES)
paradigm based on the idea that both conceptual models for DES and DES design models consist of (1) an
information model and (2) a process model.

In the case of conceptual modeling, an information model describes the types of objects and events representing
the main entities of the real-world system under investigation, while a process model describes its dynamics in
the form of a set of conceptual event rule models that capture the causal regularities of the system.

In the case of simulation design modeling, an information design model prescribes (defines) the types of all
objects and events that are relevant for the purpose of a simulation study, thus defining the state structure of
a DES system, while a process design model defines the dynamics of a DES system by defining, for all event
types of the underlying information model, an event rule design model that specifies the state changes and
follow-up events implied by the occurrence of an event of that type.

In the first part of this article series, (Wagner 2018b), we have introduced a variant of the Business Process
Modeling Notation (BPMN), called Discrete Event Process Modeling Notation (DPMN), and have shown how
to use UML Class Diagrams and DPMN Process Diagrams for making basic OE models defining a set of object
types OT, a set of event types ET, and a set of event rules R. In (Wagner 2017a), we have shown that (a) these
three sets define a state transition system, where the state space is defined by OT and ET, and the transitions are
defined by R, and (b) such a transition system represents an Abstract State Machine in the sense of Gurevich
(1985). This fundamental characterization of an OE model provides a formal (operational) semantics for OE
Simulation (OES) by defining an OES formalism that any OE simulator has to implement.

In this second part, we extend basic OEM/DPMN in two steps by adding support for (1) resource-constrained
activities and (2) GPSS/SIMAN/Arena-style processing activities and processing networks (PNs).

Modeling resource-constrained activities has been a major issue in DES since its inception in the nineteen-
sixties, while it has been neglected and is still considered an advanced topic in the field of Business Process
Modeling (BPM). BPMN only provides partial support for modeling resource-constrained activities. It allows
assigning resources to activities, but it does not allow modeling resource pools, and it does neither allow
specifying resource cardinality constraints nor parallel participation multiplicity constraints.

Processing objects enter PNs via arrival events at an entry node and then flow through one or more processing
nodes where they are subject to processing activities before they leave the system at an exit node via a departure
event. The first extension, OEM/DPMN-A, comprises five new information modeling categories ("stereotypes")
and one new process modeling element, while the second extension, OEM/DPMN-PN, comprises a set of
four pre-defined object types and three pre-defined event types, three new (node type) categories and one new
process modeling element, as listed in tables in Appendix A: OEM Elements.

1.1. Object Event Modeling

As an example for illustrating basic OEM&S, as introduced in Part I (Wagner 2018b), we present a simple
OE model of a manufacturing workstation that receives parts and stores them in its input buffer for processing
them successively. Such a model consists of (1) a conceptual model describing the real-world domain, and (2) a
simulation design model prescribing a certain computational solution for the purpose of a simulation study. Both
conceptual models and design models consist of an information model describing/defining the system's state
structure and a process model describing/defining the system's dynamics. An information design model defines
the object and event types for a corresponding process design model.

Conceptual Model

 Chapter 1. Introduction 1

Information and Process Modeling for Simulation

– Part II: Activities and Processing Networks

A conceptual information model of a workstation system, defining two object types and four event types, is
shown in Figure 1-1.

Figure 1-1. A conceptual information model of a manufacturing workstation system

«object type»
workstations

«object type»
parts

0..1

waiting parts

*

«event type»
part arrivals

1

*

«event type»
part departures

*

1

*

*

«event type»
processing starts

*
«event type»

processing ends
*

*

*

As expressed by the associations between the four event types and the two object types, for all four types of
events, there are the same two types of objects participating in them: parts and workstations, implying that each
event of these four types involves a specific part and a specific workstation.

Notice that the input buffer (filled with waiting parts) is modeled as an association end with name waiting parts
at the parts side of the association between parts and workstations, expressing the fact that at any point in time,
a workstation has zero or more parts waiting in its input buffer for being processed.

A conceptual process model of this system, describing four causal regularities in the form of event rules, one
for each type of event, is shown in Figure 1-2 in the form of a BPMN Process Diagram using Event circles
connected with Sequence Flow arrows expressing (conditional) causation, and Data Objects attached to Event
circles.

Figure 1-2. A conceptual process model of a manufacturing workstation system

part departurepart arrival

workstationinput
buffer

processing
start

processing
end

add part to

get part from

remove part

input buffer
not empty

WS available

The four event rules described by this model are

1. When a part arrives, it is added to the input buffer and, if the workstation is available, there will be a
processing start event for processing the newly arrived part.

 Chapter 1. Introduction 2

Information and Process Modeling for Simulation

– Part II: Activities and Processing Networks

2. When a processing start event occurs, the next part from the input buffer is being processed and a
processing end event is caused to occur some time later (after the processing time has elapsed).

3. When a processing end event occurs, this will cause a part departure event and, if the input buffer is not
empty, another processing start event involving the next part from the buffer.

4. When a part departure event occurs, the processed part will be removed from the workstation.

Design Model

A simulation design model is based on a conceptual model. Depending on the purposes/goals of a simulation
study, it may abstract away from certain elements of the real-world domain described by the conceptual model,
and it adds computational elements representing design decisions, such as random variables expressed int he
form of random variate sampling functions based on specific probability distributions for modeling the random
variation of certain system variables.

An information design model of the single workstation system described above is shown in Figure 1-3. This
model defines the multi-valued waitingParts association end to be ordered, which means that it corresponds
to a multi-valued reference property holding an ordered collection (such as an array list or a queue) as its value.

The information design model of Figure 1-3 defines that a PartArrival event must reference both a Part
and a WorkStation, representing situations where specific parts arrive at specific workstations. Notice that,
computationally, this model requires creating new Part objects (or retrieving them from an object pool) before a
new PartArrival event is created (or scheduled), while it is more common in simulation models to create a new
Part object only when an arrival event has occurred, which can be modeled by defining a multiplicity of 0..1 for
the Part end of the PartArrival-Part association (with the meaning that PartArrival has an optional, instead of a
mandatory, reference property with name part).

Figure 1-3. An information design model

status : WorkstationStatusEL

«object type»
WorkStation

arrivalTime : Decimal

«object type»
Part

0..1

waitingParts

*
{ordered}

«rv» recurrence() : Decimal {Tri(3,4,8)}

«exogenous event type»
PartArrival

1

*

1

*

«rv» processingTime() : Decimal {Exp(1/6)}

«event type»
ProcessingStart

«event type»
ProcessingEnd

*

*

AVAILABLE
BUSY

«enumeration»
WorkstationStatusEL

Notice that the model defines two class level operations (designated with the stereotype «rv») implementing
random variate sampling functions: PartArrival::recurrence() complies with a triangular
probability distribution with minimum, mode and maximum parameter values 3, 4 and 8, while
ProcessingStart::processingTime() complies with an exponential distribution with an event rate
parameter value of 6.

 Chapter 1. Introduction 3

Information and Process Modeling for Simulation

– Part II: Activities and Processing Networks

A process design model based on the object and event types defined by the information design model of Figure
1-3 and derived from the conceptual process model of Figure 1-2 is shown in Figure 1-4.

Figure 1-4. A process design model in the form of a DPMN Process Diagram

ws: WorkStation
[ws = a.workStation]

waitingParts.push(a.part)

a:PartArrival

ws: WorkStation
[ws = pe.workStation]

waitingParts.pop()

IF waitingParts.length = 0
THEN status := AVAILABLE

pe:ProcessingEnd

ps:Processing
Start

workStation := ws workStation := ws

ws: WorkStation
[ws = ps.workStation]

status := BUSY

workStation := ws

+ProcessingStart.
processingTime()[ws.status = AVAILABLE]

[ws.waitingParts.length > 0]

Notice that, since all events happen at the same workstation, all three event scheduling arrows are annotated
with the same event property assignment workStation := ws, which simply propagates the object reference
to the given workstation along the event scheduling chain. Such property propagation assignments (in event
property assignment annotations), where a property value of a follow-up event is set to the corresponding
property value of the scheduling (or triggering) event, will be omitted (as implied by event types having the
same property names) for avoiding to clutter the process model diagrams.

A DPMN Process Diagram, like the one shown in Figure 1-4, can be split up into a set of event rule diagrams,
one for each of its Event circles, as shown in the following table. This reduction of a DPMN process design
model to a set of event rule design models, together with the operational semantics of event rules presented in
(Wagner 2017a), provides the semantics of DPMN Process Diagrams.

Notice that an event rule design model can also be expressed textually in the form of a pseudo-code block with
four parts: part 1 indicates the triggering event type and declares a rule variable representing the triggering
event, part 2 declares further rule variables and initializes them, part 3 contains a state change script consisting
of state change statements, and part 4 schedules follow-up events.

Rule design model Pseudo-code

ws: WorkStation
[ws = a.workStation]

waitingParts.push(a.part)

a:PartArrival Processing
StartworkStation := ws

[ws.status = AVAILABLE]

ON a:PartArrival

ws : WorkStation
ws := a.workStation

ws.waitingParts.push(a.part)

IF ws.status = AVAILABLE
THEN SCHEDULE ProcessingStart(workStation:=ws)

 Chapter 1. Introduction 4

Information and Process Modeling for Simulation

– Part II: Activities and Processing Networks

ProcessingEnd
ps:Processing

Start

workStation := ws

ws: WorkStation
[ws = ps.workStation]

status := BUSY

+ProcessingStart.
processingTime()

ON ps:ProcessingStart

ws : WorkStation
ws := ps.workStation

ws.status := BUSY

SCHEDULE ProcessingEnd(workStation:=ws)
DELAYED BY ProcessingStart.processingTime()

ws: WorkStation
[ws = pe.workStation]

waitingParts.pop()

IF waitingParts.length = 0
THEN status := AVAILABLE

pe:ProcessingEnd

Processing
Start

workStation := ws

[ws.waitingParts.length > 0]

ON pe:ProcessingEnd

ws : WorkStation
ws := pe.workStation

ws.waitingParts.pop()
IF ws.waitingParts.length = 0
THEN ws.status := AVAILABLE

IF ws.waitingParts.length > 0
THEN SCHEDULE ProcessingStart(workStation:=ws)

1.2. Ontological Considerations

Ontologically, an activity is a composite event (composed of at least a start and an end event) with a duration
greater than zero, performed by an agent (a human or another living being, a robot or another artificial agent, or
an organization or another social agent). As opposed to activities, activity start and end events are instantaneous
(zero-duration) events.

As an event, an activity has objects that participate in it. In the real world, an activity has at least one
participant: the performer of the activity. Consequently, a conceptual model should, for each activity type,
include the type of objects that play the performer role for activities of that type, as described by the model
shown in Figure 1-5.

Figure 1-5. An ontology of the core categories of individuals of the OEM&S paradigm

events

entities

activities

*

performer

1

objects

agents

activity start events

activity end events

instantaneous events
1

1

1

 Chapter 1. Introduction 5

Information and Process Modeling for Simulation

– Part II: Activities and Processing Networks

However, in a simulation design model we may leave the performer of an activity implicit and model an activity
without modeling any participant. Consequently, a basic OE simulator, the core classes of which are described
in Figure 1-6, does not need to support the distinction between objects and agents.

A discrete process (instance) consists of a partially ordered set of events that happen in a coherent spatio-
temporal region determined by the events' participants and the causal regularities involved. When two or more
events within a process have the same order rank, this means that they occur simultaneously.

A business process (instance) is a discrete process that happens in the context of an organization. Typically,
a business process is an instance of a business process type defined by an organization (or organizational
unit), which is the owner of the business process type, in the form of a process model. Notice that this concept
includes business system processes, where many business actors perform activities for handling many business
cases in parallel. Consequently, it is more general than the common concept of a business process as a case-
handling process.

1.3. Object Event Simulation

The Object Event Simulation (OES) paradigm is based on the idea of executing an OE model starting with an
initial simulation state by successively applying the event rules of the model to the evolving simulation states.

Figure 1-6. A model of the core classes of individuals an OE simulator has to deal with at runtime.

occurrenceTime[0..1] : Integer
startTime[0..1] : Integer
duration[0..1] : Integer

Event

id[0..1] : Integer
name[0..1] : String

Entity

Activity

«invariant»
{occurrenceTime
= startTime
 + duration}

Object

«invariant»
{duration > 0}

ActivityStart

ActivityEnd

InstantaneousEvent

1

1

1«invariant»
{duration = 0}

Notice that the occurrence time of an activity is the time when it completes, that is, it is equal to startTime +
duration. Typically, the duration of an activity in a simulation run is known, and set, when it is started. An
activity type is normally defined with a fixed duration or a random variable duration for all activities of that
type. This allows a simulator to schedule the activity's end event when the activity is started. However, in
certain cases, an activity type may not define a preset duration, but leave the duration of activities of that type
open. When such an activity is still ongoing, it does only have a start time, but no duration and no occurrence
time.

The OES formalism

 Chapter 1. Introduction 6

Information and Process Modeling for Simulation

– Part II: Activities and Processing Networks

The OEM&S paradigm is based on the OES formalism presented in (Wagner 2017a), which is summarized
below.

Both object types and event types are defined in the form of classes: with a name, a set of properties and a set
of operations, which together define their signature. A property is essentially defined by a name and a range,
which is either a datatype (like Integer or String) or another object type.

A set of object types OT defines a predicate-logical signature as the basis of a logical expression language LOT:

each object type defines a unary predicate, and its properties define binary predicates. A state change language
COT based on OT defines state change statements expressed with the help of the object type names and property

names defined by OT. In the simplest case, state change statements are property value assignments like o.p1 := 4

or o.p1 := o.p2 where o is an object variable and p1, p2 are property names.

A set of objects O = {o1, o2, ...on} where each of them has a state in the form of a set of slots (property-value

pairs) represents a system state, that is a state of the real-world system being modeled and simulated. A system
state O can be updated by a set of state changes (or, more precisely, state change statements) # # COT with the

help of an update operation Upd. For instance, for a system state O1 = {o1} with o1 = { p1: 2, p2: 5} and a set of

state changes #1 = { o1.p1 := o1.p2 } we obtain

Upd(O1, #1) = {{ p1: 5, p2: 5}}

An event expression is a term E(x)@t where

1. E is an event type,

2. x is a (possibly empty) list of event parameters x1, x2, …, xn according to the signature of the event type

E,

3. t is a parameter for the occurrence time of events.

For instance, PartArrival(ws)@t is an event expression for describing part arrival events where the event
parameter ws is of type WorkStation, and t denotes the arrival time. An individual event of type E is a ground
event expression, e = E(v)@i, where the event parameter list x and the occurrence time parameter t have been
instantiated with a corresponding value list v and a specific time instant i. For instance, PartArrival(ws1)@1 is a
ground event expression representing an individual PartArrival event occurring at workstation ws1 at time 1.

A Future Events List (FEL) is a set of ground event expressions partially ordered by their occurrence
times, which represent future time instants either from a discrete or a continuous model of time. The
partial order implies the possibility of simultaneous events, as in the example {ProcessingEnd(ws1)@4,
PartArrival(ws1)@4}.

An event routine is a procedure that essentially computes state changes and follow-up events, possibly based on
conditions on the current state. In practice, state changes are often directly performed by immediately updating
the objects concerned, and follow-up events are immediately scheduled by adding them to the FEL. For the OES
formalism, we assume that an event routine is a pure function that computes state changes and follow-up events,
but does not apply them, as illustrated by the examples in the following table.

Event rule name / rule variables ON (event expression) DO (event routine)

rPA PartArrival(ws) @ t
:= { ws.waitingParts.push(
a.part)}

 Chapter 1. Introduction 7

Information and Process Modeling for Simulation

– Part II: Activities and Processing Networks

Event rule name / rule variables ON (event expression) DO (event routine)

a: PartArrival
ws: WorkStation
ws := a.workStation

IF ws.status = AVAILABLE
THEN FE :=
{ProcessingStart(ws)@t+1}
ELSE FE := {}

RETURN # #, FE #

rPS

ps: ProcessingStart
ws: WorkStation
ws := ps.workStation

ProcessingStart(ws) @ t

:= { ws.status := BUSY}

FE := {ProcessingEnd(ws)@t +
ProcessingStart.processingTime()}

RETURN # #, FE #

rPE

pe: ProcessingEnd
ws: WorkStation
ws := pe.workStation

ProcessingEnd(ws) @ t

:= { ws.waitingParts.pop()}
IF ws.waitingParts.length = 0
THEN # := # # {ws.status :=
AVAILABLE}

IF ws.waitingParts.length > 0
THEN FE :=
{ ProcessingStart(ws)@t+1}
ELSE FE := {}

RETURN # #, FE #

An event rule associates an event expression with an event routine F:

ON E(x)@t DO F(t, x),

where the event expression E(x)@t specifies the type E of events that trigger the rule, and F(t, x) is a function
call expression for computing a set of state changes and a set of follow-up events, based on the event parameter
values x, the event's occurrence time t and the current system state, which is accessed in the event routine F for
testing conditions expressed in terms of state variables.

An OE model based on a state change language COT and a corresponding update operation Upd is a triple #OT,

ET, R#, consisting of a set of object types OT, event types ET and event rules R.

An OE simulation (system) state based on an OE model #OT, ET, R# is a triple S = #t, O, E# with t being the
current simulation time, O being a system state (a set of objects instantiating types from OT), and E being a set
of imminent events to occur at times greater than t (and instantiating types from ET), also called Future Event
List (FEL).

An event rule r = ON E(x)@t DO F(t, x) can be considered as a 2-step function that, in the first step, maps an
event e = E(v)@i to a parameter-free state change function re = F(i, v), which maps a system state O to a pair

#, FE # of system state changes # # COT and follow-up events FE. When the parameters t and x of F(t, x) are

replaced by the values i and v provided by a ground event expression E(v)@i, we also simply write Fi,v instead

of F(i, v) for the resulting parameter-free state change function.

 Chapter 1. Introduction 8

Information and Process Modeling for Simulation

– Part II: Activities and Processing Networks

We say that an event rule r is triggered by an event e when the event's type is the same as the rule's event type.
When r is triggered by e, we can form the state change function re = Fi,v and apply it to a system state O by

mapping it to a set of state changes and a set of follow-up events:

re(O) = Fi,v(O) = # #, FE #

We can illustrate this with the help of our workstation example. Consider the rule rPA defined in the table above

triggered by the event PartArrival(ws1)@1 in state O0 = {ws1.status: AVAILABLE, ws1.waitingParts: []}. We

obtain

rPA(O0) = F1,ws1(O0) = # #1, FE1 #

with #1 = { ws1.waitingParts.push(a.part)} and FE1 = {ProcessingStart@2}.

An OE model defines a state transition system where

1. A state is a simulation state S = #t, O, E#.

2. A transition of a simulation state S consists of

1. advancing t to the occurrence time t' of the next events NE # E, which is the set of all imminent
events with minimal occurrence time;

2. processing all next events e # NE by applying the event rules r # R triggered by them to the
current system state O according to

re(O) = # #e , FEe #

resulting in a set of state changes # = # {#e | e # NE } and a set of follow-up events FE = # {FEe |

e # NE }.

such that the resulting successor simulation state is S' = # t', O', E' # with O' = Upd(O, #) and E' = E #
NE # FE.

Notice that the OES formalism first collects all state changes brought about by all the simultaneous next events
(from the set NE) of a simulation step before applying them. This prevents the state changes brought about by
one event from NE to affect the application of event rules for other events from NE, thus avoiding the problem
of non-determinism through the potential non-confluence (or non-serializability) of parallel events.

OE simulators are computer programs that implement the OES formalism. Typically, for performance reasons,
discrete event simulators do not first collect all state changes brought about by all the simultaneous next events
(the set NE) of a simulation step before applying them, but rather apply them immediately in each triggered
event routine. However, this approach takes the risk of an unreliable semantics of certain simulation models in
favor of performance.

OESjs – a JavaScript-based OE simulator

The OESjs simulator presented in (Wagner 2017b) implements the OES formalism by implementing (1) object
types as classes extending the pre-defined class oBJECT, (2) event types as classes extending the pre-defined
class eVENT, and (3) event rules as onEvent methods of event classes.

The OESjs simulator is available from the educational simulation website sim4edu.com.

 Chapter 1. Introduction 9

https://sim4edu.com

Information and Process Modeling for Simulation

– Part II: Activities and Processing Networks

Chapter 2. Simple Activities

A simple activity is an activity with zero or more participants, none of which is having a special meaning (such
as being a resource or a processing object).

2.1. Conceptual Modeling of Simple Activities

Conceptually, an activity is a composite event that is temporally framed by a pair of start and end events.
Consequently, whenever a model contains a pair of related start and end event types, like processing start and
processing end in the model of a manufacturing workstation shown on the left-hand side of Figure 2-1 and
Figure 2-2, they can be replaced with a corresponding activity type, like processing, as shown on the right-hand
side.

Figure 2-1. Introducing an activity type in a conceptual information model of a single workstation system.

«object type»
workstations

«object type»
parts

0..1

waiting parts

*

«event type»
part arrivals

1

*

«event type»
part departures

*

1

*

*

«event type»
processing starts

*
«event type»

processing ends
*

*

* «activity type»
processing

«object type»
parts

«object type»
workstations

0..1

waiting parts

*

«event type»
part arrivals

1

*

1*

*

*

«event type»
part departures

*

*

It is obvious that applying this replacement pattern leads to a conceptual and visual simplification of the models
concerned.

Figure 2-2. Introducing an activity type in a conceptual process model of a single workstation system.

part departurepart arrival

workstationinput
buffer

processing
start

processing
end

add part to

get part from

remove part

input buffer
not empty

WS available

part departurepart arrival

workstation
with input buffer

processing
WS available

input buffer
not empty

add part to input buffer

remove part
from workstation

 Chapter 2. Simple Activities 10

Information and Process Modeling for Simulation

– Part II: Activities and Processing Networks

2.2. Design Modeling of Simple Activities

Like in a conceptual model, also in a design model, a pair of corresponding activity start and end event types (or
Event circles), like ProcessingStart and ProcessingEnd in the source models shown in Figure 2-3 and
Figure 2-4, can be replaced with a corresponding activity type (or Activity rectangles), like Processing, as in
the target models shown in these figures.

Extending basic OEM information design models by adding activity types

Figure 2-3. Going from basic OEM to OEM-A class models by introducing activity types.

status : WorkstationStatusEL

«object type»
WorkStation

arrivalTime : Decimal

«object type»
Part

0..1

waitingParts

*
{ordered}

«rv» recurrence() : Decimal {Tri(3,4,8)}

«exogenous event type»
PartArrival

1

*

1

*

«rv» processingTime() : Decimal {Exp(1/6)}

«event type»
ProcessingStart

«event type»
ProcessingEnd

*

*

AVAILABLE
BUSY

«enumeration»
WorkstationStatusEL

status : WorkstationStatusEL

«object type»
WorkStation

arrivalTime : Decimal

«object type»
Part

0..1

waitingParts

*
{ordered}

«rv» recurrence() : Decimal {Tri(3,4,8)}

«exogenous event type»
PartArrival

1

*

1

*

«rv» time() : Decimal {Exp(1/6)}

«activity type»
Processing

*

AVAILABLE
BUSY

«enumeration»
WorkstationStatusEL

In the case of an information design model, this replacement pattern implies allocating all features (attributes,
associations and operations) of the classes defining the start and the end event type in the class defining the
corresponding activity type, possibly with renaming some of them. In the example of Figure 2-3, there is only
one such feature: the class-level operation ProcessingStart::processingTime, which is allocated to
Processing and renamed to time.

Extending basic DPMN process design diagrams by adding Activity rectangles

 Chapter 2. Simple Activities 11

Information and Process Modeling for Simulation

– Part II: Activities and Processing Networks

Figure 2-4. Going from basic DPMN to DPMN-A process models by introducing Activity rectangles.

ws: WorkStation
[ws = a.workStation]

waitingParts.push(a.part)

a:PartArrival

ws: WorkStation
[ws = pe.workStation]

waitingParts.pop()

IF waitingParts.length = 0
THEN status := AVAILABLE

pe:ProcessingEnd

ps:Processing
Start

workStation = ws workStation =
ps.workStation

ws: WorkStation
[ws = ps.workStation]

status := BUSY

[ws.waitingParts.length > 0]

+ProcessingStart.
processingTime()[ws.status = AVAILABLE]

ws: WorkStation
[ws = a.workStation]

waitingParts.push(a.part)

a:PartArrival

ws: WorkStation
[ws = p.workStation]

waitingParts.pop()

IF waitingParts.length = 0
THEN status := AVAILABLE

duration = Processing.time()
workStation = ws

p:Processing

duration = Processing.time()
workStation = ws

ws: WorkStation
[ws = p.workStation]

status := BUSY

[ws.status = AVAILABLE]

[ws.waitingParts.length > 0]

In the case of a process design model, the replacement pattern implies that an Event circle pair consisting of
an Event circle intended to represent an activity start event type and an Event circle intended to represent an
activity end event type, with an event scheduling arrow from the start to the end Event circle annotated by a
delay expression, is replaced by an Activity rectangle such that:

1. All Data Objects attached to the end Event circle get attached to the Activity rectangle (since an activity
occurs when it it is completed).

2. All event scheduling arrows going out from the end Event circle are turned into event scheduling arrows
going out from the Activity rectangle.

 Chapter 2. Simple Activities 12

Information and Process Modeling for Simulation

– Part II: Activities and Processing Networks

3. All start event scheduling arrows are replaced with corresponding activity scheduling arrows having
an additional creation parameter assignment for the duration of a scheduled activity, which is set to
the delay expression defined for the end event scheduling arrow. In the example above, the duration
parameter in the annotation of the two activity scheduling arrows is set to Processing::time() in the
target diagram, which is the same as the delay ProcessingStart::processingTime in the source
diagram.

4. When the start Event circle has one or more attached Data Objects or any outgoing event scheduling
arrow that does not go to the end Event circle, then a start Event circle has to be included in the Activity
rectangle for attaching the Data Object(s) and as the source of the outgoing event scheduling arrow(s).

This Activity-Start-End Rewrite Pattern, which can also be applied in the inverse direction, replacing an
Activity rectangle with an Event circle pair, defines the meaning of an Activity rectangle in a DPMN diagram.
It allows reducing a DPMN-A diagram with Activity rectangles to a basic DPMN diagram without Activity
rectangles.

Notice that, like the source model, also the target model of Figure 2-4 specifies three event rules:

1. On each part arrival, the arrived part is added to the workstation's input buffer and if the workstation's
status is AVAILABLE, then a new Processing activity is scheduled to start immediately with a duration
provided by invoking the time function defined in the Processing activity class.

2. When a Processing activity starts, the workstation's status is changed to BUSY.

3. When a Processing activity ends, the processed part is removed from the input buffer and, if the input
buffer is not empty, a new Processing activity is scheduled to start immediately, otherwise (if the input
buffer is empty) the workstation's status is changed to AVAILABLE.

An alternative process design model of the single workstation system

Based on the same information design model, shown in Figure 2-3, we can make another process design model
of the single workstation system as an alternative to the target model of Figure 2-4. This alternative model
makes it more clear that a workstation is, in fact, an exclusive resource of its processing activity. The concepts
of resources and resource-constrained activities are discussed in the following sections, and in Section 3.2, it
is shown how to simplify the basic DPMN model of Figure 2-5 by using the higher-level modeling elements
introduced in DPMN-A.

Figure 2-5. Allocating and re-allocating the workstation as a resource of Processing activities

ws: WorkStation
[ws = a.workStation]

wsAllocated: Boolean

IF status = AVAILABLE
THEN wsAllocated:= true; status := BUSY

ELSE waitingParts.push(a.part)

a:PartArrival

ws: WorkStation
[ws = p.workStation]

wsReallocated: Boolean

IF waitingParts.length = 0
THEN status := AVAILABLE
ELSE wsReallocated := true
p.part := waitingParts.pop()

p:Processing

[wsReallocated]
[wsAllocated]

 Chapter 2. Simple Activities 13

Information and Process Modeling for Simulation

– Part II: Activities and Processing Networks

Chapter 3. Resource-Constrained Activities

A Resource-Constrained Activity is an activity where one or more participants play a Resource Role (such as
Performer). Typically, a Resource-Constrained Activity is a component of a business process that happens in
the context of an organization or organizational unit, which is associated with the activity as its Process Owner.

An activity of a certain type may require certain resources for being performable. At any point in time, a
resource required for performing an activity may be available or not. A resource is not available, for instance,
when it is is busy or when it is out of order.

Summary

1. A Resource-Constrained Activity can only be started when the required resources are
available.

2. Which participants of a Resource-Constrained Activity of type A play the role of a resource
is defined in an OEM Class Diagram by special properties of A, called Resource Roles.

3. Resource (Cardinality) Constraints are defined in an OEM Class Diagram in the form of
multiplicities of Resource Roles.

4. The resources that are available for being allocated to a planned activity are provided by
Resource Pools managed by Process Owners. A Resource Pool is modeled in an OEM Class
Diagram as a collection-valued reference property of the object type representing the Process
Owner.

5. A Resource Type is defined in an OEM Class Diagram as a special object type that has
a resource status attribute and is the range of both a Resource Role and a Resource Pool
property.

6. A Resource-Dependent Activity Start arrow is a high-level modeling element of DPMN
Process Diagrams, merging the semantics of event scheduling arrows with the Allocate-
Release modeling pattern.

7. OEM-A extends basic OEM by adding activities, resource roles, resource constraints,
resource pools, resource types and resource-dependent activity start arrows. Notice that most
of these resource modeling elements are expressed in an OEM Class Diagram, and only
the possible event flows are expressed in a DPMN Process Diagram (representing an OEM
process model) with the help of Resource-Dependent Activity Start arrows.

Resources are objects of a certain type. The resource objects of an activity include its performer, as expressed in
the diagram shown in Figure 3-1. While in a conceptual model, describing a real-world system, a performer is
required for any activity, a simulation design model may abstract away from the performer of an activity.

For instance, a consultation activity may require a consultant and a room. Such resource constraints are defined
at the type level. When defining the activity type Consultation, these resource constraints are defined in the
form of two mandatory associations with the object types Consultant and Room such that both associations'
ends have the multiplicity 1 ("exactly one"). Then, in a simulation run, a new Consultation activity can only
be started, when both a Consultant object and a Room object are available.

 Chapter 3. Resource-Constrained Activities 14

Information and Process Modeling for Simulation

– Part II: Activities and Processing Networks

For all types of resource-constrained activities, a simulator can automatically collect the following statistics:

1. Throughput statistics: the numbers of enqueued and dequeued planned activities, and the numbers of
started and completed activities.

2. Queue length statistics (average, maximum, etc.) of its queue of planned activities.

3. Cycle time statistics (average, maximum, etc.), where cycle time is the sum of the waiting time and the
activity duration.

4. Resource utilization statistics: the percentage of time each resource object involved is busy with an
activity of that type.

In addition, a simulator can automatically collect the percentage of time each resource object involved is idle or
out-of-order.

Figure 3-1. The resources required for performing an activity include the activity's performer.

events

entities

activities

*

performer

1

objects

*

resources

1..*

agents

«invariant»
{A performer
is a resource}

*

process owner0..1

resource-
constrained

activities

For modeling resource-constrained activities, we need to define their types. As can be seen in Figure 3-2, a
resource-constrained activity type is composed of

1. a set of properties and a set of operations, as any entity type,

2. a set of resource roles, each one having the form of a reference property with a name, an object type as
range, and a multiplicity that may define a resource constraint like, e.g., "exactly one resource object of
this type is required" or "at least two resource objects of this type are required".

The resource roles defined for an activity type may include the performer role.

 Chapter 3. Resource-Constrained Activities 15

Information and Process Modeling for Simulation

– Part II: Activities and Processing Networks

Figure 3-2. Activity types may have special properties representing resource roles.

events

entities

activities

entity types

type1

*

*

performer

1

activity typesevent types

objects

*

resources

1..*

agents

«invariant»
{A performer
is a resource}

properties

*

*

operations

resource roles

*

object types agent types

*

process owner0..1

These considerations show that a simulation language for simulating activities needs to allow defining activity
types with two kinds of properties: ordinary properties and resource roles. At least for the latter ones, it must
be possible to define multiplicities for defining resource constraints. These requirements are fulfilled by OEM
Class Diagrams where resource roles are defined as stereotyped properties using the stereotype «resource role»
or, shorter, «res».

The extension of basic OEM by adding the concepts needed for modeling resource-constrained activities (in
particular, resource roles with constraints, resource pools, and resource-dependent activity start arrows) is called
OEM-A.

3.1. Conceptual Modeling of Resource-Constrained Activities

Modeling resource-constrained activities has been a major issue in the field of Discrete Event Simulation
(DES) since its inception in the nineteen-sixties, while it has been neglected and is still considered an advanced
topic in the field of Business Process Modeling (BPM). For instance, while BPMN allows assigning resources
to activities, it does not allow modeling resource pools (see), and does neither allow specifying resource
cardinality constraints nor parallel participation multiplicity constraints (see).

In the DES paradigm of Processing Networks, Gordon (1961) has introduced the resource management
operations Seize and Release in the simulation language GPSS for allocating and de-allocating (releasing)
resources. Thus, GPSS has established a standard modeling pattern for resource-constrained activities,
which has become popular under the name of Seize-Delay-Release indicating that for simulating a resource-
constrained activity, its resources are first allocated, and then, after some delay (representing the duration of the
simulated activity), they are de-allocated (released).

Resource roles and process owners

 Chapter 3. Resource-Constrained Activities 16

Information and Process Modeling for Simulation

– Part II: Activities and Processing Networks

As an illustrative example, we consider a hospital consisting of medical departments where patients arrive for
getting a medical examination performed by a doctor in a room of the department. A medical examination, as
an activity, has four participants: a patient, a medical department, a doctor and a room, but only two of them
play a resource role: doctors and rooms. This can be indicated in an OEM class diagram by using the stereotype
«resource role» for categorizing the association ends that represent resource roles, as shown in Figure 3-3.

Figure 3-3. A conceptual information model of the activity type "examinations" with resource roles.

«activity type»
examinations

«object type»
doctors

«object type»
rooms

«resource role»
performer

1

*

«resource role»1

*

«object type»
medical departments

«object type»
patients

waiting line

*
{ordered}

0..1

*

process owner1

«event type»
patient arrivals

*

1

*

process owner 1

*

1

Notice that both the event type patient arrivals and the activity type examinations have a (mandatory functional)
reference property process owner. This implies that both patient arrival events and examination activities
happen at a specific medical department, which is their process owner in the sense that it owns the process types
composed of them. A process owner is called "Participant" in BPMN (in the sense of a collaboration participant)
and visually rendered in the form of a container rectangle called "Pool".

In Figure 3-3, the resource role of doctors is designated as the performer role. Also in BPMN, Performer is
considered to be a special type of resource role. According to (BPMN 2011), a performer can be "a specific

individual, a group, an organization role or position, or an organization".[1]In BPMN, the performer role is
specialized into the HumanPerformer of an activity, which is, in turn, specialized into PotentialOwner denoting
the "persons who can claim and work" on an activity of a given type. "A potential owner becomes the actual
owner [...] by explicitly claiming" an activity. Allocating a human resource to an activity by leaving the choice
to those humans that play a suitable resource role is characteristic for workflow management systems, while in
traditional DES approaches to resource handling, as in Arena and AnyLogic, (human) resources are assigned to
a task (as its performer) based on certain policies.

One of the main reasons for considering certain objects as resources is the need to collect utilization statistics
(either in an operational information system, like a workflow management system, or in a simulation model)
by recording the use of resources over time (their utilization) per activity type. By designating resource roles in
information models, these models provide the information needed in simulations and information systems for
automatically collecting utilization statistics.

Resource pools and resource allocation

 [1]See Section 10.2.2 in the BPMN 2.0 specification. This enumeration should be extended by adding artificial agents, such as

robots, embedded systems and software systems.

 Chapter 3. Resource-Constrained Activities 17

Information and Process Modeling for Simulation

– Part II: Activities and Processing Networks

In the hospital example, a medical department, as the process owner, is the organizational unit that is
responsible for reacting to certain events (here: patient arrivals) and managing the performance of certain
processes and activities (here: medical examinations), including the allocation of resources to these processes
and activities. For being able to allocate resources to activities, a process owner needs to manage resource
pools, normally one for each resource role of each type of activity (if pools are not shared among resource
roles). A resource pool is a collection of resource objects of a certain type. For instance, the three X-ray rooms
of a diagnostic imaging department form a resource pool of that department.

Resource pools can be modeled in an OEM class diagram by means of special associations between object
classes representing process owners (like medical departments) and resource classes (like doctors and rooms),
where the association ends, corresponding to collection-valued properties representing resource pools, are
stereotyped with «resource pool», as shown in Figure 3-4. At any point in time, the resource objects of a
resource pool may be out of order (like a defective machine or a doctor who is not on schedule), busy or
available.

Figure 3-4. Adding two resource pools for medical departments.

«activity type»
examinations

«object type»
doctors

«object type»
rooms

«resource role»
performer

1

*

«resource role»1

*

allocate_a_doctor()
allocate_a_room()

«object type»
medical departments

«object type»
patients

waiting line

*
{ordered}

0..1

*
process owner1

«event type»
patient arrivals

«resource pool»

*

*

*

1

«resource pool» *

*

*

process owner 1

*

1

A process owner has special procedures for allocating available resources from resource pools to activities. For
instance, in the model of Figure 3-4, a medical department has the procedures "allocate a doctor" and "allocate
a room" for allocating a doctor and a room to a medical examination. These resource allocation procedures
may use various policies, especially for allocating human resources, such as first determining the suitability
of potential resources (e.g., based on expertise, experience and previous performance), then ranking them and
finally selecting from the most suitable ones (at random or based on their turn). See also (Arias et al 2018).

In the conceptual process model shown in Figure 3-5, a doctor and a room are always allocated and released
(de-allocated) together.

 Chapter 3. Resource-Constrained Activities 18

Information and Process Modeling for Simulation

– Part II: Activities and Processing Networks

Figure 3-5. A conceptual process model based on the information model of Figure 3-4.

medical department

IF doctor and room available
THEN allocate doctor and room
ELSE add patient to waiting line

patient arrivals

medical department

IF waiting line empty
THEN release doctor and room

ELSE fetch next patient

examinations
doctor and room allocated

another patient fetched

This process model describes two causal regularities in the form of the following two event rules, each stated
with two bullet points: one for describing all the state changes and one for describing all the follow-up events
brought about by applying the rule.

1. When a new patient arrives:

• if a room and a doctor are available, then they are allocated to the examination of that patient;
otherwise, if a room or a doctor is not available, the patient is added to the waiting line;

• if a doctor and a room have been allocated, then start an examination of the patient.

2. When an examination is completed by a doctor in a particular room:

• if the waiting line is empty, then the room and doctor are released; otherwise, if there are still
patients in the line, the next patient is fetched to be examined by that doctor in that room;

• if another patient has been fetched, then start the examination of that patient.

These conceptual event rules describe the real-world dynamics of a medical department according to business
process management decisions. Changes of the waiting line and (de-)allocations of rooms and doctors are
considered to be state changes (in the, not necessarily computerized, information system) of the department,
as they are expressed in Data Object rectangles, which represent state changes of affected objects caused by an
event in DPMN.

Notice that the model of Figure 3-5 abstracts away from the fact that after allocating a room and a doctor,
patients first need to walk to the room before their examination can start. Such a simplification may be justified
if the walking time can be neglected or if there is no need to maximize the productive utilization of doctors who,
according to this process model, have to wait until the patient arrives at the room. Below, this model is extended
for allowing to allocate rooms and doctors in a decoupled manner such that patients have to wait for doctors,
and not the other way around.

Switching roles: doctors as patients

The same person who is a doctor at a diagnostic imaging department may be treated as a patient of that
department. It's a well-known fact that in the real world people may switch roles and may play several roles
at the same time, but many modeling approaches/platforms fail to admit this. For instance, the simulation
language (SIMAN) of the well-known DES modeling tool Arena does not treat resources and processing objects
("entities") as roles, but as strictly separate categories. This language design decision was a meta-modeling

 Chapter 3. Resource-Constrained Activities 19

Information and Process Modeling for Simulation

– Part II: Activities and Processing Networks

mistake, as admitted by Denis Pegden, the main creator of SIMAN/Arena, in (Drogoul et al 2018) where he says
"it was a conceptualization mistake to view Entities and Resources as different constructs".

In Figure 3-6, the above model is extended by categorizing the classes doctors and patients as «role type»
classes and adding the «kind» class people as a supertype of doctors and patients, we create the possibility that a
person may play both roles: the role of a doctor and the role of a patient, albeit not at the same time. The object
type categories «kind» and «role type» have been introduced to conceptual modeling by Guizzardi (2005).

Figure 3-6. A conceptual information model with doctors and patients as people.

«activity type»
examinations

«role type»
doctors

«object type»
rooms

«resource role»
performer

1
*

«resource role»1

*

allocate_a_doctor()
allocate_a_room()

«object type»
medical departments

«role type»
patients

waiting line

*
{ordered}

0..1

*
process owner1

«event type»
patient arrivals

«resource pool»

*

*

*

1

«resource pool» *

*

*

process owner 1

*

1

«kind»
people

Queueing planned activities

Whenever an activity is to be performed but cannot start due to a required resource not being available, the
planned activity is placed in a queue as a waiting job. Thus, in the case of a medical examination of a patient,
as described in the model of Figure 3-6, the waiting line represents, in fact, a queue of planned examinations
(involving patients), and not a queue of waiting patients.

This consideration points to a general issue: modeling resource-constrained activities implies modeling queues
of planned activities, while there is no need to consider (physical) queues of (physical) objects. Consequently,
even if a real-world system includes a physical queue (of physical objects), an OEM-A model may abstract
away from its physical character and consider it as a queue of planned activities (possibly including pre-
allocated resources). While a physical queue implies that there is a maximum capacity, a queue of planned
activities does not imply this. For instance, when a medical department does not require patients to queue up
in a waiting area for obtaining an examination, but accepts their registration for an examination by phone, the
resulting queue of waiting patients is not a physical queue (but rather a queue of planned examinations) and
there is no need to limit the number of waiting patients in the same way as in the case of queuing up in a waiting
area with limited space.

A planned activity can only start, when all required resources have been allocated to it. Thus, a planned
examination of a patient can only start, when both a room and a doctor have been allocated to it. Let's assume
that when a patient p arrives, only a room is available, but not a doctor. In that case, the available room is
allocated to the planned examination, which is then placed in a queue since it still has to wait for the availability

 Chapter 3. Resource-Constrained Activities 20

Information and Process Modeling for Simulation

– Part II: Activities and Processing Networks

of a doctor. Only when a doctor becomes available, e.g., via the completion of an examination of another
patient or via an arrival of a doctor, the doctor can be allocated as the last resource needed to start the planned
examination of patient p.

As a consequence of these considerations, the waiting line of a medical department modeled in Figure
3-6 as an ordered collection of patients is renamed to planned walks in Figure 3-7. In addition, a property
planned examinations, which holds an ordered collection of patient-room pairs, is added to the class medical
departments. These model elements reflect the hospital's business process practice to maintain a list of patients
waiting for the allocation of a room to walk to and a list of planned examinations, each with a patient waiting for
a doctor in an examination room.

Decoupling the allocation of multiple resources

For being more realistic, we consider the fact that patients first need to be walked by nurses to the room
allocated to their examination before the examination can start. Thus, in the model of Figure 3-7, we add a
second activity type, walks to room, involving people (typically, nurses and patients) walking to an examination
room.

Figure 3-7. Adding the activity type "walks to room" to the conceptual information model.

«activity type»
examinations

«role type»
doctors

«object type»
rooms

«resource role»
performer

1

*

«resource role»1

*

allocate_a_doctor()
allocate_a_room()

planned examinations[*]

«object type»
medical departments

«role type»
patients

planned walks

*
{ordered}

0..1

*
process owner1

«event type»
patient arrivals

«resource pool»

*

*

*

1

«resource pool» *

*

*

process owner 1

*

1

«kind»
people

«activity type»
walks to room 1*

* «resource role» 1

*

«role type»
nurses

 Chapter 3. Resource-Constrained Activities 21

Information and Process Modeling for Simulation

– Part II: Activities and Processing Networks

Figure 3-8. A conceptual process model based on the information model of Figure 3-7.

medical department

IF room and nurse available
THEN allocate room and nurse
ELSE queue up a new planned

walk

patient arrivals

medical department

IF waiting line not empty
AND nurse available

THEN allocate nurse and re-allocate
room to next patient
ELSE release room

IF there is still a planned examination
THEN re-allocate doctor

ELSE release doctor

examinationswalks to room

medical department

IF waiting line not empty
AND room available

THEN re-allocate nurse to
next patient's walk

ELSE release nurse
IF doctor available

THEN allocate doctor
ELSE queue up a new
planned examination

room allocated
doctor allocated

nurse re-allocated

room re-allocated

doctor re-allocated

This process model describes three causal regularities in the form of the following three event rules:

1. When a new patient arrives:

• if a room and a nurse are available, they are allocated to the walk of that patient to that room,
otherwise a new planned walk is placed in the corresponding queue;

• if a room has been allocated, then the nurse starts walking the patient to the room.

2. When a walk of a patient and nurse to a room is completed:

• if there is still a planned walk in the queue and a room is available, then the room is allocated and
the nurse is re-allocated to the walk of the next patient to that room.
if a doctor is available, she is allocated to the examination of that patient, else a new planned
examination of that patient is queued up;

• if a doctor has been allocated, then the examination of that patient starts
if the nurse has been re-allocated, she starts walking the next patient to the allocated room.

3. When an examination of a patient is completed by a doctor in a particular room:

• if there is still a planned examination (of another patient in another room), then re-allocate the
doctor to that planned examination, else release the doctor;
if the waiting line is not empty, re-allocate the room to the next patient, else release the room;

• if the doctor has been re-allocated to a planned examination, that examination starts;
if the room has been re-allocated to another patient, that patient starts walking to the room.

Notice that the process type described in Figure 3-8 does not consider the fact that doctors have to walk to the
examination room too, which could be modeled by adding a doctors' walks to room Activity rectangle after the
patients' walks to room Activity rectangle.

For being able to collect informative utilization statistics, it is required to distinguish the total time a resource is
allocated (its 'gross utilization') from the time it is allocated for productive activities (its 'net utilization'). Thus,

 Chapter 3. Resource-Constrained Activities 22

Information and Process Modeling for Simulation

– Part II: Activities and Processing Networks

only examinations would be classified as productive activities, while walks to room would rather be considered
a kind of set-up activities.

Re-engineering the process type by centralizing the re-allocation of resources

In the process type described in Figure 3-8, the re-allocation of released resources is handled in the event rules
of activity end events:

• when a nurse's and patient's walk to a room ends, the nurse is free to be re-allocated; so if there is another
planned walk and a room is available, the nurse is re-allocated to a walk of the next patient to that room;

• when an examination ends, its resources (a doctor and a room) are re-allocated, if planned activities are
waiting for them.

This approach requires that the same re-allocation logic is repeated in the event rules of all activity types
associated with that type of resource, implying that all performers involved would have to know and execute
the same re-allocation logic. It is clearly preferable to centralize this logic in a single event rule, which can
be achieved by introducing release resource request events following activities that do not need to keep
resources allocated, as shown in Figure 3-9 where the re-allocation of doctors and rooms is decoupled from
the examination activities and centralized (e.g., in a special resource management unit) by adding the two
event types room release requests and doctor release requests modeling simultaneous events that follow
examinations.

Figure 3-9. An improved process model based on the information model of Figure 3-7.

medical department

IF room and nurse available
THEN allocate room and nurse
ELSE queue up a new planned

walk

patient arrivals

examinationswalks to room

medical department

IF doctor available

THEN allocate doctor
ELSE queue up a new
planned examination room release

requests

doctor
release
requests

medical department

IF waiting line not empty AND nurse available
THEN allocate nurse and re-allocate room to next patient's walk

ELSE release room

medical department

IF there is still a planned examination
THEN re-allocate doctor to it

ELSE release doctor

nurse
release
requests

medical department

IF waiting line not empty AND room available
THEN allocate room AND re-allocate nurse to next patient's walk

ELSE release nurse

room allocated

doctor re-allocated

doctor
allocated

nurse
re-allocated

room re-allocated

This process model describes an improved business process with six event rules:

1. When a new patient arrives:

• if a room and a nurse are available, they are allocated to the walk of that patient to that room,
otherwise a new planned walk is placed in the corresponding queue;

• if a room has been allocated, then the nurse starts walking the patient to the room.

 Chapter 3. Resource-Constrained Activities 23

Information and Process Modeling for Simulation

– Part II: Activities and Processing Networks

2. When a walk of a patient and nurse to a room is completed:

• if a doctor is available, she is allocated to the examination of that patient, else a new planned
examination of that patient is queued up;

• if a doctor has been allocated, then the examination of that patient starts; in addition, a nurse release
request is issued.

3. When a nurse release request has been issued:

• if the waiting line is not empty and a room is available, allocate the room and re-allocate the nurse
to the next patient, else release the nurse;

• if the nurse has been re-allocated to another patient, she starts walking that patient to the room.

4. When an examination is completed:

• [no state change]

• a room release request is issued (e.g., by notifying a resource management clerk or the department's
information system), and, in parallel, a doctor release request is issued.

5. When a room release request is received by a resource manager:

• if the waiting line is not empty and a nurse is available, allocate the nurse and re-allocate the room
to the next patient, else release the room;

• if the room has been re-allocated to another patient, the nurse starts walking that patient to the
room.

6. When a doctor release request is received by a resource manager:

• if there is still a planned examination (of another patient in another room), then re-allocate the
doctor to that planned examination, else release the doctor;

• if the doctor has been re-allocated to a planned examination, that examination starts.

Notice that, in the general case, instead of scheduling several simultaneous release requests, each for a single
resource, when an activity completes, a single joint release request for all used resources should be scheduled,
allowing to re-allocate several of the released resources jointly.

Displaying the process owner and activity performers

The process owner and the involved performers can be displayed in an OEM process model by using a
rectangular Pool container for the process owner and Pool partitions called Lanes for the involved activity
performers, as shown in Figure 3-10. Notice that, as opposed to BPMN, where lanes do not have a well-defined
meaning, but can be used for any sort of arranging model elements, DPMN Lanes represent organizational
actors playing resource roles.

 Chapter 3. Resource-Constrained Activities 24

Information and Process Modeling for Simulation

– Part II: Activities and Processing Networks

Figure 3-10. Displaying the process owner and activity performers in a conceptual process model.
m

ed
ic

al
 d

ep
ar

tm
en

ts

nu
rs

es

nurses

patient arrivals

walks to room

medical department

IF room available
THEN a room is allocated

ELSE patient is added to waiting line

medical department

IF doctor available

THEN a doctor is allocated
ELSE a new planned

examination is queued up

nurse
release
requests

medical department

IF waiting line not empty AND room available
THEN allocate room AND re-allocate nurse

to next patient's walk
ELSE release nurse

do
ct

or
s

doctors
medical department

IF there is still a planned examination
THEN re-allocate doctor to it

ELSE release doctor

examinations

room release requests

doctor
release
requests

medical department

IF waiting line not empty
THEN re-allocate room to next patient

ELSE release room

room allocated
doctor allocated

nurse
re-allocated

room re-allocated

doctor
re-allocated

Non-exclusive resources

In OEM, a resource is exclusive by default, that is, it can be used in at most one activity at the same time, if no
parallel participation multiplicity is specified. For instance, in all information models above (e.g., in Figure
3-3), the participation associations between the resource classes rooms and doctors and the activity classes
walks and examinations do not specify any parallel participation multiplicity (for the association end at the side
of the activity class), but just the common (historical participation) multiplicity of "*" expressing that resources
participate in zero or more activities over time (without an upper bound).

OEM extends UML Class Diagrams by adding the association end stereotype «parallel» for expressing parallel
participation multiplicities.

A non-exclusive resource can be simultaneously used in more than one activity. The maximum number of
activities, in which a non-exclusive resource can participate at the same time, is normally specified at the type
level for all resource objects of that type using the upper bound of a parallel participation multiplicity. But
there may be cases where it should be specified at the level of individual resource objects. For instance, larger
examination rooms may accommodate more examinations than smaller ones.

A resource can be exclusive with respect to all types of activities (which is the default case) or it can be
exclusive with respect to specific types of activities. For instance, in the model of Figure 3-11, a parallel
participation multiplicity of 0..1 is defined both for the participation of rooms in walks and in examinations.
This means a room can participate in at most one walk and in at most one examination at the same time, which
is a different business rule, allowing to walk patients to a room even if it is currently used for an examination,
compared to the model of Figure 3-3, allowing to walk patients to a room only if it is currently not being used
for an examination.

 Chapter 3. Resource-Constrained Activities 25

Information and Process Modeling for Simulation

– Part II: Activities and Processing Networks

Figure 3-11. Adding parallel participation multiplicities for rooms
participating both in walks and examinations at the same time.

«activity type»
examinations

«role type»
doctors

«object type»
rooms

«resource role»
performer

1

*

«resource role»1

«parallel»

0..1

«kind»
people

«activity type»
walks to room 1* «resource role» 1

«parallel»0..1

«role type»
nurses

3.2. Resource-Constrained Activities in Simulation Design Models

In simulation design models, resource-constrained activities can be modeled in two ways:

1. either abstracting away from the structure of resource object types and individual resource objects,
and only representing a resource object type in the form of a named resource pool with a quantity (or
counter) attribute holding the number of available resources, or

2. explicitly representing resource object types and individual resource objects of that type as members of a
collection representing a resource pool.

While the first approach is simpler, the second approach allows modeling various kinds of non-availability of
specific resources (e.g., due to failures or due to not being in the shift plan).

For any resource object type Res, the three operations described in the following table are needed.

Resource management
operation

General meaning
Resource counter

approach
Resource pool approach

isResAvailable
test if a resource of type
Res is available and
return true or false

test if the corresponding
resource counter attribute
has a value that is greater
than 0

test if the number of
available resource objects
in the resource pool is
greater than 0

allocateRes
allocate a resource object
of type Res

decrement resource
counter attribute

select (and return) a
resource object from the
set of available resource
objects in the resource
pool (using an allocation
policy) and designate it as
BUSY

releaseRes
de-allocate a resource
object of type Res

increment resource
counter attribute

take a resource object
of type Res as argument
and designate it as
AVAILABLE

 Chapter 3. Resource-Constrained Activities 26

Information and Process Modeling for Simulation

– Part II: Activities and Processing Networks

In both approaches, it is natural to add these operations to the object type representing the process owner of the
activities concerned, as in the models shown in Figure 3-12 and Figure 3-14.

In the first approach, for each resource object type in the conceptual model, a resource counter attribute is added
to the object type representing the process owner and the conceptual model's resource object types are dropped.

In the second approach, the conceptual model's resource object types are elaborated by adding an enumeration
attribute status holding a resource status value such as AVAILABLE or BUSY. For each resource object type,
a collection-valued property (such as rooms or doctors) representing a resource pool is added to the object type
representing the process owner.

A simple model with resource counters

Using the conceptual information model shown in Figure 3-4 as a starting point, we first rename all classes and
properties according to OO naming conventions and replace each of the two (conceptual) operations allocate
a room and allocate a doctor with a triple of isAvailable/allocate/release operations for the two resource
object classes Room and Doctor in the MedicalDepartment class, where we also add the counter attributes
nmrOfRooms and nmrOfDoctors. Then, the two resource object classes Room and Doctor are dropped. The
result of this elaboration is the information design model shown in Figure 3-12.

Figure 3-12. An information model for the simplified design
with the resource counters nmrOfRooms and nmrOfDoctors.

«rv» duration() : Decimal {U(5,10)}

«activity type»
Examination

isRoomAvailable() : Boolean
allocateRoom()
releaseRoom()
isDoctorAvailable() : Boolean
allocateDoctor()
releaseDoctor()

nmrOfRooms : Integer
nmrOfDoctors : Integer

«object type»
MedicalDepartment

«object type»
Patient

*
{ordered}

0..1

*

1

«rv» recurrence() : Decimal {Exp(1/5)}

«event type»
PatientArrival

*

1

*

1

*

1

The allocate/release oper-
ations de-/increment the
corresponding counters.

planned
Examinations

Using the conceptual process model shown in Figure 3-5 as a starting point and based on the type definitions of
the information design model of Figure 3-12, we get the following process design.

 Chapter 3. Resource-Constrained Activities 27

Information and Process Modeling for Simulation

– Part II: Activities and Processing Networks

Figure 3-13. A process design model based on the information design model of Figure 3-12.

This process model defines the following two event rules.

ON pa: PatientArrival

md : MedicalDepartment
resAllocated : Boolean
md := pa.medicalDepartment

IF md.isRoomAvailable() AND md.isDoctorAvailable()
THEN md.allocateRoom(); md.allocateDoctor(); resAllocated := true
ELSE md.waitingPatients.push(pa.patient); resAllocated := false

IF resAllocated SCHEDULE Examination(patient:=pa.patient, medicalDepartment:=md)

ON ex: Examination

md : MedicalDepartment
anotherPatientFetched : Boolean
p: Patient
md := ex.medicalDepartment

IF md.waitingPatients.length = 0
THEN md.releaseRoom(); md.releaseDoctor(); anotherPatientFetched := false
ELSE p := md.waitingPatients.pop(); anotherPatientFetched := true

IF anotherPatientFetched SCHEDULE Examination(patient:=p, medicalDepartment:=md)

Notice that the event scheduling arrows of Figure 3-13, and also the SCHEDULE statements of the
corresponding event rule tables, do not contain assignments of the duration of activities, since it is assumed
that, by default, whenever an activity type has an operation duration(), the duration of activities of this type are
assigned by invoking this operation.

A general model with resource objects as members of resource pools

In a more general approach, instead of using resource counter attributes, explicitly modeling resource object
classes (like Room and Doctor) allows representing resource roles (stereotyped with «res») and resource pools

 Chapter 3. Resource-Constrained Activities 28

Information and Process Modeling for Simulation

– Part II: Activities and Processing Networks

(stereotyped with «pool») in the form of collections (like md.rooms and md.doctors) and modeling various
forms of non-availability of resources (such as machines being defective or humans not being in the shift plan)
with the help of corresponding resource status values (such as OUT_OF_ORDER). The result of this elaboration
is the information design model shown in Figure 3-14.

Figure 3-14. An OEM-A class model with resource object types for modeling resource roles and pools.

«rv» duration() : Decimal {U(5,10)}

«activity type»
Examination

status : ResourceStatusEL

«object type»
Doctor

status : ResourceStatusEL

«object type»
Room

«res»1

*

«res»1

*

isRoomAvailable() : Boolean
allocateRoom() : Room
releaseRoom(in r : Room)
isDoctorAvailable() : Boolean
allocateDoctor() : Doctor
releaseDoctor(in d : Doctor)

«object type»
MedicalDepartment«object type»

Patient
*

{ordered}
0..1

*
processOwner1

«rv» recurrence() : Decimal {Exp(1/5)}

«event type»
PatientArrival

«pool»

*

*

*

1

«pool» *

*

*

1

*

1

AVAILABLE
BUSY
OUT_OF_ORDER

«enumeration»
ResourceStatusEL

processOwner

planned
Examinations

For an OEM-A class model, like the one shown in Figure 3-14, the following completeness constraint must
hold: when an object type O (like Doctor) participates in a «res» association (a resource role association) with
an activity type A (like Examination), the process owner object type of A (MedicalDepartment) must have a
«pool» association with O.

 Chapter 3. Resource-Constrained Activities 29

Information and Process Modeling for Simulation

– Part II: Activities and Processing Networks

Figure 3-15. A process design model based on the information design model of Figure 3-14.

Extending OEM Class Diagrams by adding a «resource type» category

The information design model of Figure 3-14 contains two object types, Room and Doctor, which are the range
of resource role and resource pool properties (association ends stereotyped «res» and «pool»). Such object types
can be categorized as «resource type» with the implied meaning that they inherit a resource status attribute from
a pre-defined class Resource, as shown in Figure 3-17.

Figure 3-16. Any resource type R extends the pre-defined object type Resource

id : Integer
name : String

Object

isAvailable() : Boolean
allocate() : Resource
release()

status : ResourceStatusEL

Resource

AVAILABLE
BUSY
OUT_OF_ORDER

«enumeration»
ResourceStatusEL

«resource type»
R

The introduction of resource types to OEM class models allows simplifying models by dropping the following
modeling items from OEM-A class models, making them part of the implicit semantics:

1. the status attributes of object types representing resource types, which are implicitly inherited;

2. the pre-defined enumeration ResourceStatusEL;

3. the resource management operations isAvailable, allocate and release, which are implicitly inherited by
any resource type; and

 Chapter 3. Resource-Constrained Activities 30

Information and Process Modeling for Simulation

– Part II: Activities and Processing Networks

4. the planned activity queues may possibly be implicitly represented for any resource-constrained activity
type in the form of ordered multi-valued reference properties of its process owner object type.

This is shown in Figure 3-17.

Figure 3-17. A simplified version of the model of Figure 3-14

«rv» duration() : Decimal {U(5,10)}

«activity type»
Examination

«resource type»
Doctor

«resource type»
Room

«res»1

*

«res»1

*

«object type»
MedicalDepartment

«object type»
Patient

* 0..1

*

processOwner1

«rv» recurrence() : Decimal {Exp(1/5)}

«event type»
PatientArrival

«pool»

*

*

*

1

«pool» *

*

*

1

*

1

{ordered}

processOwner

planned
Examinations

Revisiting the manufacturing workstation example

A manufacturing workstation, or a "server" in the terminology of Operation Research, represents a resource
for the processing activities performed at/by it. This was left implicit in the OEM-A class model shown on the
right-hand side of Figure 2-3. Using the new modeling elements (resource types, resource roles and resource
pools), the processing activities of a workstation can be explicitly modeled as resource-constrained activities,
leading to the OEM-A class model shown in Figure 3-18 and to a more high-level and more readable process
model compared to the process model of Figure 2-4.

 Chapter 3. Resource-Constrained Activities 31

Information and Process Modeling for Simulation

– Part II: Activities and Processing Networks

Figure 3-18. An OEM class diagram modeling a single
workstation system with resource-constrained processing activities

«resource type»
WorkStation

arrivalTime : Decimal

«object type»
Part

0..1

waitingParts

*
{ordered}

«rv» recurrence() : Decimal {Tri(3,4,8)}

«exogenous event type»
PartArrival

0..1

*

1

*

«rv» duration() : Decimal {Exp(1/6)}

«activity type»
Processing

«res»1

*

«object type»
ProductionPlant

«pool»

1

*

processOwner 1
*

1

*

Decoupling the allocation of multiple resources

In a simplified simulation design for the extended scenario (with patients and nurses first walking to
examination rooms before doctors are allocated for starting the examinations) described by the conceptual
models of Figure 3-7 and Figure 3-10, we do not consider the walks of doctors, but only the walks of nurses
and patients. For simplicity, we drop the superclass people and associate the activity type WalkToRoom with the
Patient and Nurse classes. The result of this elaboration is the information design model shown in Figure 3-19.

 Chapter 3. Resource-Constrained Activities 32

Information and Process Modeling for Simulation

– Part II: Activities and Processing Networks

Figure 3-19. An information design model for decoupling the allocation of rooms and doctors.

«rv» duration() : Decimal {U(5,10)}

«activity type»
Examination

«resource type»
Doctor

«resource type»
Room

«res»
performer

1

*

«res»1

*

«object type»
MedicalDepartment

«object type»
Patient

*

processOwner1

«rv» recurrence() : Decimal {Exp(1/5)}

«event type»
PatientArrival

«pool»

*

*

*

1

«pool»

*

*

*

processOwner

1

*

1

«rv» duration() : Decimal {U(1,2)}

«activity type»
WalkToRoom

*

processOwner 1

*

«res»

1

*

1

«object type»
Nurse

«pool»

*

*

«res»
performer

1

*

Figure 3-20. A process design model based on the information design model of Figure 3-19.

 Chapter 3. Resource-Constrained Activities 33

Information and Process Modeling for Simulation

– Part II: Activities and Processing Networks

This process design model defines three event rules. Notice that the Examination event rule either re-allocates
the doctor to the next planned examination and schedules it, if there is one, or it releases the doctor and re-
allocates the room to the next planned walk-to-room and schedules it, if there is one.

Centralizing the re-allocation of resources

As shown before, in the conceptual process models of Figure 3-9 and Figure 3-10, the re-allocation of
resources can be centralized with the help of resource release request events and the process owner and the
involved performers can be displayed by using a Pool that is partitioned into Lanes for the involved activity
performers, resulting in the model shown in Figure 3-21.

Figure 3-21. Representing the process owner as a Pool and
activity performers as Lanes in a process design model.

 Chapter 3. Resource-Constrained Activities 34

Information and Process Modeling for Simulation

– Part II: Activities and Processing Networks

3.3. The Allocate-Release Modeling Pattern

The conceptual process model shown in Figure 3-10 and the process design model shown in Figure 3-21
exhibit a general pattern for modeling a sequence of two resource-constrained activities of types A1 and A2

shown in Figure 3-22. For describing this pattern, we assume that

1. the process owner maintains queues for planned activities: q1 for for planned activities of type A1, and

q2 for planned activities of type A2, both defined as queue-valued (i.e., ordered multi-valued) reference

properties of the process owner in the underlying information model;

2. the underlying information model specifies the sets of resources R1 and R2 required by A1 and A2,

3. the set of resources required by A2 but not by A1 is denoted by R2#R1;

4. the set of resources required by A1 and by A2 is denoted by R1#R2.

Figure 3-22. A conceptual modeling pattern for a sequence of resource-constrained activities

process owner

IF R1 available
THEN allocate R1

ELSE add planned A1 to q1

start event

activities of type
A2activities of type A1

process owner

IF R2−R1 available

THEN allocate R2−R1
ELSE add planned A2 with R1∩R2 to q2

R2
release
requests

process owner

IF q1 not empty AND R1−R2 available
THEN allocate R1−R2 and re-allocate R1∩R2 to head(q1)

ELSE release R1∩R2
IF q2 not empty

THEN re-allocate R2−R1 to head(q2)
ELSE release R2−R1

R1−R2
release
requests

process owner

IF q1 not empty AND R1∩R2 available
THEN allocate R1∩R2 AND re-allocate R1−R2 to head(q1)

ELSE release R1−R2

R1 allocated

R1−R2
re-allocated

R2−R1 re-allocated

R2−R1
allocated

R1∩R2 re-allocated

We can describe the algorithm of the Allocate-Release Modeling Pattern for the case of a sequence of two
resource-constrained activities in the following way:

1. ON start event:

a. If the resources R1 required by A1 are available, they are allocated; otherwise, a planned A1

activity is added to the queue q1.

b. If the resources R1 have been allocated, a new activity of type A1 is started.

 Chapter 3. Resource-Constrained Activities 35

Information and Process Modeling for Simulation

– Part II: Activities and Processing Networks

2. WHEN an activity of type A1 completes:

a. The resources R2#R1 are allocated, if they are available; otherwise, a planned A2 activity with

reserved resources R1#R2 is added to q2.

b. If R2#R1 have been allocated, a new activity of type A2 is started. In addition, an immediate

release request for R1#R2 is caused/scheduled.

3. ON release request for R1#R2:

a. If q1 is not empty and the resources R1#R2 required by both A1 and A2 are available, they are

allocated and R1#R2 are re-allocated to head(q1); otherwise, R1#R2 are released.

b. If the resources R1#R2 have been re-allocated, a new activity of type A1 is started.

4. WHEN an activity of type A2 completes:

a. There is no state change.

b. An immediate release request for R2 is caused/scheduled.

5. ON release request for R2:

a. If R1#R2 is nonempty: if q1 is not empty and the resources R1#R2 required by A1, but not yet

allocated, are available, they are allocated and R1#R2 are re-allocated to head(q1); otherwise,

R1#R2 are released. If q2 is not empty, then re-allocate R2#R1 to head(q2); otherwise, R2#R1 are

released.

b. If R1#R2 have been re-allocated, a new activity of type A1 is started. If R2#R1 have been re-

allocated, a new activity of type A2 is started.

New modeling elements for expressing the Allocate-Release Modeling Pattern

Since the Allocate-Release Modeling Pattern defines a generic algorithm for allocating and releasing resources,
its (pseudo-)code does not have to be included in a DPMN Process Diagram, but can be delegated to an OE
simulator supporting the resource-dependent scheduling of resource-constrained activities according to this
pattern. This approach allows introducing new DPMN modeling elements for expressing the Allocate-Release
Modeling Pattern in a concise way, either leaving allocate-release steps completely implicit, as in the DPMN
Process Diagram of Figure 3-23, or explicitly expressing them, as in Figure 3-24.

The most important new DPMN modeling element introduced are resource-dependent causation (resp.,
activity start) arrows pointing to resource-constrained activities, as in Figure 3-23. These arrows are high-level
modeling elements representing the implicit allocate-release logic exhibited in Figure 3-22. Thus, the meaning
of the model of Figure 3-23 is provided by the model of Figure 3-22.

Figure 3-23. Using resource-dependent activity start arrows in a conceptual process model.

start event

A2A1

 Chapter 3. Resource-Constrained Activities 36

Information and Process Modeling for Simulation

– Part II: Activities and Processing Networks

It is an option to display the implicit allocate-release steps with Allocate and Release rectangles together with
simple control flow arrows, as between the start event circle and the Allocate R1 rectangle in Figure 3-24.

Figure 3-24. Displaying the implicit allocate-release steps.

start event

A2A1
Allocate

R1
Release
R1−R2

Allocate
R2−R1

Release
R2

The meaning of the model of Figure 3-24 is the same as that of Figure 3-23, which is provided by the model of
Figure 3-22. The fact that, using resource-dependent activity start arrows, the allocate-release logic of resource-
constrained activities does not have to be explicitly modeled and displayed in an OEM process model shows the
power of founding a process model on an information model, since the entire resource management logic can
be expressed in terms of resource roles, constraints and pools in an OEM information model. This is in contrast
to the common approach of industrial simulation tools, such as Simio and AnyLogic, which require defining
resource roles, constraints and pools as well as explicit allocate-release steps in the process model, in a similar
way as shown in Figure 3-24.

Using resource-dependent scheduling arrows in a process model implies using their standard allocate-release
logic according to which required resources that have not been allocated before are allocated immediately before
an activity requiring them is started and released immediately after this activity is completed if they are not
required by the next activity. Whenever another (non-standard) resource allocation logic is needed, it has to be
expressed explicitly using ordinary event scheduling arrows.

Simplifying the workstation process model

We can now simplify the workstation model using the resource type category for WorkStation in the OEM
class model and a resource-dependent activity start arrow from the arrival event to the processing activity in the
DPMN process model. The resulting class model is shown in Figure 3-27.

Figure 3-25. Modeling WorkStation as a resource type

«resource type»
WorkStation

arrivalTime : Decimal

«object type»
Part

0..1

waitingParts

*
{ordered}

«rv» recurrence() : Decimal {Tri(3,4,8)}

«exogenous event type»
PartArrival

0..1

*

1

*

«rv» duration() : Decimal {Exp(1/6)}

«activity type»
Processing

«res»1

*

«object type»
ProductionPlant

«pool»

1

*

processOwner 1
*

1

*

The simplification of the process model of Figure 2-5 results in the model of Figure 3-26.

 Chapter 3. Resource-Constrained Activities 37

Information and Process Modeling for Simulation

– Part II: Activities and Processing Networks

Figure 3-26. A simplified version of the workstation process
model using a resource-dependent activity start arrow.

a:PartArrival

p: Processing

Simplifying the medical department process model

We can now simplify the medical department model using the resource type category for Doctor, Room and
Nurse in the OEM class model and resource-dependent activity start arrows in the DPMN process model. The
resulting class model is shown in Figure 3-27.

Figure 3-27. A simplified version of the medical department
information model with Doctor and Room as resource types

«rv» duration() : Decimal {U(5,10)}

«activity type»
Examination

«resource type»
Doctor

«resource type»
Room

«res»
performer

1

*

«res»1

*

«object type»
MedicalDepartment

«object type»
Patient

*

processOwner1

«rv» recurrence() : Decimal {Exp(1/5)}

«event type»
PatientArrival

«pool»

*

*

*

1

«pool»

*
*

*

processOwner

1

*

1

«rv» duration() : Decimal {U(1,2)}

«activity type»
WalkToRoom

*

processOwner 1

*

«res»

1

*

1

«object type»
Nurse

«pool»

*

*

«res»
performer

1

*

The simplification of the rather complex process model of Figure 3-21 by using resource-dependent activity
start arrows results in the model of Figure 3-28.

 Chapter 3. Resource-Constrained Activities 38

Information and Process Modeling for Simulation

– Part II: Activities and Processing Networks

Figure 3-28. A simplified version of the medical department
process model using resource-dependent scheduling arrows.

m
ed

ic
al

D
ep

ar
tm

en
t

do
ct

or
nu

rs
e

pa:PatientArrival

ex: Examination

w: WalkToRoom

 Chapter 3. Resource-Constrained Activities 39

Information and Process Modeling for Simulation

– Part II: Activities and Processing Networks

Chapter 4. Processing Activities and Processing Networks

A Processing Activity is a resource-constrained activity that takes one or more objects as inputs and processes
them in some way (possibly transforming them), resulting in one or more output objects. The processed objects
have been called "transactions" in GPSS and "entities" in SIMAN/Arena, while they are called Processing
Objects in DPMN.

Ontologically, there are one or more objects participating in an activity, as shown in Figure 4-1. Some of them
represent resources, while others represent processing objects. For instance, in the information and process
models of a medical department shown in Figure 3-7 and Figure 3-10, there are two processing activity types:
walks to room and examinations. In walks to room, since nurses are walking patients to examination rooms,
nurses and rooms are resources, while patients are processing objects. In examinations, doctors and rooms are
resources, while patients are processing objects. If patients would walk to an examination room by themselves
(without the help of a nurse), patients would be the performers of walks to a room, and not processing objects,
and, consequently, walks to a room would not be processing activities.

Figure 4-1. Resource-constrained activities involving processing objects are processing activities.

events

entities

activities

*

performer

1

objects

*

resources

1..*

agents

«invariant»
{A performer
is a resource}

*

process owner0..1

*

*
processing

objects

resource-
constrained

activities

processing
activities

Processing activities typically require immobile physical resources, like rooms or workstation machines,
which define the inner nodes of a Processing Network (PN). A Processing Object enters such a network via an
Arrival event at an Entry Node, is subsequently routed along a chain of Processing Nodes where it is subject to
Processing Activities, and finally exits the network via a Departure event at an Exit Node.

Summary

1. A Processing Object enters a Processing Network (PN) via an Arrival event at an Entry
Node, is subsequently routed along a chain of Processing Nodes where it is subject to
Processing Activities, and finally exits the network via a Departure event at an Exit Node.

2. PNs have been investigated in operations management and the mathematical theory of
queuing (Loch 1998, Williams 2016) and have been the application focus of most industrial
simulation software products, historically starting with GPSS (Gordon 1961) and SIMAN/
Arena (Pegden and Davis 1992).

3. OEM-PN allows modeling many forms of discrete processing processes.

 Chapter 4. Processing Activities and Processing Networks 40

Information and Process Modeling for Simulation

– Part II: Activities and Processing Networks

4. PN models are spatial simulation models where node objects, and other resource objects, are
located in space and processing objects move (or flow) in space.

5. Each node definition in a PN model defines both a spatial node object and an event type.

6. An Object Flow Arrow connecting two nodes of a PN model represents both an event flow
and an object flow. While events flow in time, processing objects flow in space (and time).

The nodes of a PN define locations in a network space, which may be based on a two- or three-dimensional
Euclidean space. Consequently, OEM-PN models are spatial simulation models, while basic OEM and OEM-
A allow to abstract away from space. When processing objects are routed to a follow-up processing activity,
they move to the location of the next processing node. The underlying space model allows visualizing a PN
simulation in a natural way with processing objects as moving objects.

Each node in a PN model represents both an object and an event type. An Entry Node represents both an
entry point (e.g., a reception area or an entrance to an inventory) and an arrival event type. A Processing Node
represents both a resource object (e.g., a workstation or a room) and a processing activity type. An Exit Node
represents both an exit point and a departure event type. A flow arrow connecting two Processing Nodes
represents both an event flow and an object flow. Thus, the node types and the flow arrows of a PN are high-
level modeling concepts that are overloaded with two meanings.

A PN modeling language should have elements for modeling each of the three types of nodes. Consequently,
DPMN-A has to be extended by adding new visual modeling elements for entry, processing and exit nodes, and
for connecting them.

In the field of DES, PNs have often been characterized by the narrative of “entities flowing through a system”.
In fact, while in basic DPMN and in DPMN-A, there is only a flow of events, in DPMN-PN this flow of events
is over-laid with a flow of (processing) objects.

PNs have been investigated in operations management and the mathematical theory of queuing (Loch 1998,
Williams 2016) and have been the application focus of most industrial simulation software products, historically
starting with GPSS (Gordon 1961) and SIMAN/Arena (Pegden and Davis 1992). They allow modeling many
forms of discrete processing processes as can be found, for instance, in the manufacturing industry and the
services industry.

It is remarkable that the PN paradigm has dominated the discrete event simulation market since the 1990’s and
still flourishes today, mainly in the manufacturing and services industries, often with object-oriented and “agent-
based” extensions. Its dominance has led many simulation experts to view it as a synonym of DES, which is a
conceptual flaw because the concept of DES, even if not precisely defined, is clearly more general than the PN
paradigm.

The PN paradigm has often been called a “process-oriented” DES approach. But unlike the business process
modeling language BPMN, it is not concerned with a general concept of business process models, but rather
with the special class of processing process models for discrete processing systems. A processing process
includes the simultaneous handling of several “cases” (processing objects) that may compete for resources or
have other interdependencies, while a “business process” in Business Process Management has traditionally
been considered as a case-based process that is isolated from other cases.

For PN models, a simulator can automatically collect the following statistics, in addition to the resource-
constrained activities statistics described in 3. Resource-Constrained Activities:

 Chapter 4. Processing Activities and Processing Networks 41

Information and Process Modeling for Simulation

– Part II: Activities and Processing Networks

1. The number of processing objects that arrived at, and departed from, the system.

2. The number of processing objects in process (that is, either waiting in a queue/buffer or being processed)

3. The average time a processing object spends in the system (also called throughput time).

During a simulation run, it must hold that the number of processing objects that arrived at the system is equal to
the sum of the number of processing objects in process and the number of processing objects that departed from
the system, symbolically:

arrived = in-process + departed

4.1. Conceptual Modeling of Processing Networks

For accommodating PN modeling, OEM-A is extended by adding pre-defined types for processing objects,
entry node objects, arrival events, processing node objects, processing activities, exit objects and departure
events, resulting in OEM-PN. These "built-in" types, which are described in Figure 4-2, allow making PN
models based on them simply by making a process model (with DPMN) without the need of making an
information/class model as its foundation, as shown in Figure 4-3.

Figure 4-2. A conceptual OEM class model defining built-in types for conceptual PN modeling

«object type»
ProcessingObject

«object type»
EntryNode

«event type»
Arrival

1

*

0..1

*

«object type»
ProcessingNode

«activity type»
ProcessingActivity

1

*

«object type»
ExitNode

«event type»
Departure

1

*

1

*

1

*

An example of a conceptual PN model: Department of Motor Vehicles

As a simple example of a PN simulation model we consider a Department of Motor Vehicles (DMV) with two
consecutive service desks: a reception desk and a case handling desk. When a customer arrives at the DMV,
she first has to queue up at the reception desk where data for her case is recorded. The customer then goes to
the waiting area and waits for being called by the case handling desk where her case will be processed. After
completing the case handling, the customer leaves the DMV via the exit.

Customer arrivals are modeled with an «entry node» element (with name “DMV entry”), the two consecutive
service desks are modeled with two «processing node» elements, and the departure of customers is modeled
with an «exit node» element (with name “DMV exit”).

DPMN is extended by adding the new modeling elements of PN Node rectangles, representing node objects,
and PN Object Flow arrows, representing combined object-event flows. PN Node rectangles take the form of

 Chapter 4. Processing Activities and Processing Networks 42

Information and Process Modeling for Simulation

– Part II: Activities and Processing Networks

stereotyped UML object rectangles, while PN Object Flow arrows have a special arrow head consisting of a
circle and three bars, as shown in Figure 4-3.

Figure 4-3. A PN model using the new DPMN modeling elements of PN Node rectangles and PN Flow arrows

«entry node»
dmvEntry

«processing node»
receptionDesk

«processing node»
caseHandlingDesk

«exit node»
dmvExit

Using both Object Flow arrows and Event Scheduling arrows

While an Object Flow arrow between two nodes implies both a flow of the processing object to the successor
node and the resource-dependent scheduling of the next processing activity, an Event Scheduling arrow from
a processing node to an Event circle represents an event flow where a processing activity end event causes/
schedules another event, as illustrated in the example of Figure 4-4.

Figure 4-4. A DPMN-PN process diagram with an Event Scheduling arrow

«entry node»
dmvEntry

«processing node»
receptionDesk

«processing node»
caseHandlingDesk

«exit node»
dmvExit

call police

false documents

4.2. Processing Network Design Models

For accommodating PN modeling, OEM-A is extended by adding pre-defined types for processing objects,
entry node objects, arrival events, processing node objects, processing activities, exit objects and departure
events, resulting in OEM-PN. These "built-in" types, as described in Figure 4-5, allow making PN models
based on them simply by making a process model with DPMN without the need of making an OEM class model
as its foundation, as shown in Figure 4-6.

 Chapter 4. Processing Activities and Processing Networks 43

Information and Process Modeling for Simulation

– Part II: Activities and Processing Networks

Figure 4-5. An OEM class design model defining built-in types for making PN design models

arrivalTime : Number

«object type»
ProcessingObject

arrivalRecurrence : Function to Number
successorNodes : Function to ProcessingNode[1..*]

«object type»
EntryNode

«event type»
Arrival

1

*

0..1

*

duration : Function to Number
successorNodes : Function to ProcessingNode|ExitNode[1..*]

«object type»
ProcessingNode

«activity type»
ProcessingActivity

1

*

«object type»
ExitNode

«event type»
Departure

1

*1
*

1

*

Notice that the range of the properties arrivalRecurrence, successorNodes and duration of the built-in object
types EntryNode and ProcessingNode is Function, which means that the value of such a property for a
specific node is a specific function. While the standard UML semantics does not support such an extension
of the semantics of properties in the spirit of the Functional Programming paradigm, its implementation in a
functional OO programming language like JavaScript, where objects can have instance-level functions/methods,
is straightforward.

The property successorNodes allows to express a function that provides, for any given entry or processing node,
a (possibly singleton) set of processing nodes or exit nodes. Such a function can express several cases of routing
a processing object from a node to one or more successor nodes:

1. a fixed unique successor node for modeling a series of processing nodes connected by (possibly
conditional) resource-dependent scheduling arrows, as in Figure 4-8;

2. a conditional unique successor node for modeling an Exclusive (XOR) Gateway leading to one of
several possible successor nodes;

3. a variable subset of a set of potential successor nodes for modeling an Inclusive (OR) Gateway;

4. a fixed set of successor nodes for modeling a Parallel (AND) Gateway;

In a DPMN diagram, the set of successor nodes of a node is defined by Flow Arrows, possibly in combination
with Gateways.

PN example 1: a single workstation

Part arrivals are modeled with an «entry node» element (with name “partEntry”), the workstation is modeled
with a «processing node» element, and the departure of parts is modeled with an «exit node» element (with
name “partExit”).

DPMN is extended by adding the new modeling elements of PN Node rectangles, representing node objects
with associated event types, and PN Flow arrows, representing combined object-event flows. PN Node

 Chapter 4. Processing Activities and Processing Networks 44

Information and Process Modeling for Simulation

– Part II: Activities and Processing Networks

rectangles take the form of stereotyped UML object rectangles, while PN Flow arrows have a special arrow
head, as shown in Figure 4-6.

Figure 4-6. A PN model of a workstation system using PN Node rectangles and PN Flow arrows

arrivalRecurrence = tri(3,4,8)

«entry node»
partEntry

duration = exp(1/6)

«processing node»
workStation

«exit node»
partExit

PN example 2: a workstation may have to rework parts

Parts that turn out to be defective after being processed need to be reworked. This can be modeled by adding an
attribute percentDefective to the object type Workstation and suitable logic to the Processing activity end event
rule such that in percentDefective % of all cases a processed part cannot depart the system (i.e., is not removed
from the input buffer), but is being reworked by another Processing activity.

Figure 4-7. A PN model of a workstation system where parts may have to be reworked

arrivalRecurrence = tri(3,4,8)

«entry node»
partEntry

duration = exp(1/6)
percentDefective = 5

«processing node»
workStation «exit node»

partExit

defective: Boolean

IF U(1,100) <= percentDefective
THEN defective := true

[defective]

PN example 3: Department of Motor Vehicles

A Department of Motor Vehicles (DMV) has two consecutive service desks: a reception desk and a case
handling desk. When a customer arrives at the DMV, she first has to queue up at the reception desk where
data for her case is recorded. The customer then goes to the waiting area and waits for being called by the case
handling desk where her case will be processed. After completing the case handling, the customer leaves the
DMV via the exit.

Customer arrivals are modeled with an «entry node» element (with name “dmvEntry”), the two consecutive
service desks are modeled with two «processing node» elements, and the departure of customers is modeled
with an «exit node» element (with name “dmvExit”).

Figure 4-8. A PN model using the new DPMN modeling elements of PN Node rectangles and PN Flow arrows

arrivalRecurrence = exponential(1/4)

«entry node»
dmvEntry

duration = triangular(1,2,4)

«processing node»
receptionDesk

duration = uniform(1,2)

«processing node»
caseHandlingDesk

«exit node»
dmvExit

 Chapter 4. Processing Activities and Processing Networks 45

Information and Process Modeling for Simulation

– Part II: Activities and Processing Networks

4.3. Proprietary terminologies and diagram languages

Even after a 50 years history of PN modeling and simulation there is still no vendor-neutral language definition
for the PN paradigm, e.g., in the form of a meta-model, which could be used as a basis for comparing and
evaluating different PN modeling tools, and for interchanging models between them. The simulation modeling
concepts of the PN paradigm, which have been pioneered by GPSS and SIMAN/Arena, have been adopted by
many other simulation software products, including Simul8, Simio and AnyLogic. However, each product based
on this paradigm uses its own variants of the PN concepts, together with their own proprietary terminology and
proprietary diagram language, as illustrated by Table 4-1.

Table 4-1. Comparison of different terminologies used for the same PN modeling concepts.

OEM Arena Simul8 Simio AnyLogic

Processing Object Entity Work Item Token Agent

Entry Node Create Start Point Source Source

Processing Node Process Queue+Activity Server
Service or Seize
+Delay+Release

Exit Node Dispose End Point Sink Sink

Notice especially the strange term “Agent” used by AnyLogic, instead of the Arena term “Entity”, for
processing objects like manufacturing parts in production systems or patients in hospitals. It is confusing to call
a manufacturing part, such as a wheel in the production of a car, an “agent”.

As noted by van der Aalst (2014), “the use of proprietary building blocks in tools such as ARENA makes it hard
to interchange simulation models”.

We illustrate the problem of different proprietary diagram languages by showing an Arena diagram in Figure
4-9 and an AnyLogic diagram in Figure 4-10, both representing the DMV model of Figure 4-8.

Figure 4-9. An Arena diagram for the DMV model

While an Arena "Process" element, like Reception Desk in Figure 4-9, when defined with an activity of type
Delay, does not require defining any explicit resources while assuming the Process element itself to be an
implicit resource, an AnyLogic "Service" element, like reception in Figure 4-10, requires first defining a
resource pool (with a resource type and a pool size), like receptionDesks, and then reference it in the definition
of the element.

 Chapter 4. Processing Activities and Processing Networks 46

Information and Process Modeling for Simulation

– Part II: Activities and Processing Networks

Figure 4-10. An AnyLogic diagram for the DMV model (imposing Java naming syntax)

 Chapter 4. Processing Activities and Processing Networks 47

Information and Process Modeling for Simulation

– Part II: Activities and Processing Networks

Chapter 5. Transformation Activities

A transformation activity is a processing activity that transforms one or more input objects of certain types into
one ore more output objects of different types.

To be completed ...

 Chapter 5. Transformation Activities 48

Information and Process Modeling for Simulation

– Part II: Activities and Processing Networks

Acknowledgements

The author is grateful to Frederic (Rick) D. McKenzie (†2020) for providing the opportunity to spend a
sabbatical at the Modeling, Simulation and Visualization Engineering Department of Old Dominion University
in Norfolk, Virginia, USA, in 2016. During that time, the grounds of the presented work have been laid.

This research has not been funded by the German research foundation Deutsche Forschungsgemeinschaft
(DFG).

 i

Information and Process Modeling for Simulation

– Part II: Activities and Processing Networks

Bibliography

• van der Aalst, W.M.P. 2014. Business process simulation survival guide. In: J. vom Brocke and M.
Rosemann (eds), Handbook on business process management, vol 1, 2nd edn., Springer, pp 337–370.

• Arias, M., J. Munoz-Gama, and M. Sepulveda. 2018. Towards a Taxonomy of Human Resource Allocation
Criteria. In: Teniente E. and M. Weidlich (eds.), Business Process Management Workshops. BPM 2017.
Lecture Notes in Business Information Processing 308, 475–483, Springer.

• Business Process Model and Notation (BPMN), Version 2.0, 2011. http://www.omg.org/spec/BPMN/2.0

• Drogoul, A., P. Fishwick, N. Gilbert, D. Pegden, G. Wagner, and L. Yilmaz. 2018. Panel Discussion: On
the Unity and Diversity of Computer Simulation. Journal of Simulation Engineering, volume 1, 2018.
Available from https://articles.jsime.org/1/4/Unity-and-Diversity-of-Simulation

• Gordon, G. 1961. A general purpose systems simulation program. In AFIPS '61: Proceedings of the
Eastern Joint Computer Conference, Washington, D.C., 87–104, Association for Computing Machinery.

• Guizzardi, G. 2005. Ontological foundations for structural conceptual models. PhD thesis, University of
Twente, Enschede, The Netherlands. CTIT Ph.D. thesis series No. 05-74 ISBN 90-75176-81-3.

• Gurevich, Y. 1985. A New Thesis. Abstracts, American Mathematical Society, 6:4, p.317.

• Loch, C.H. 1998. Operations Management and Reengineering. European Management Journal, 16,
306-317.

• Pegden, C.D. and D.A. Davis. 1992. Arena: a SIMAN/Cinema-based hierarchical modeling system. In
Proceedings of the 24th Winter Simulation Conference (WSC '92). ACM, New York, NY, USA, 390–399.

• Schruben, L.W. 1983. Simulation Modeling with Event Graphs. Communications of the ACM 26, 957-963.

• Standridge, C.R. 2013. Beyond Lean: Simulation in Practice, Second Edition, Open Access book, available
from https://scholarworks.gvsu.edu/cgi/viewcontent.cgi?article=1006&context=books.

• Wagner, G. 2017a. An Abstract State Machine Semantics for Discrete Event Simulation. In Proceedings
of the 2017 Winter Simulation Conference. Piscataway, NJ: IEEE. Available from https://www.informs-
sim.org/wsc17papers/includes/files/056.pdf.

• Wagner, G. 2017b. Sim4edu.com – Web-Based Simulation for Education. Proceedings of the 2017 Winter
Simulation Conference. Piscataway, NJ: IEEE.

• Wagner, G. 2018a. Discrete Event Process Modeling Notation (DPMN). Language Reference. Available
from https://dpmn.info/spec.

• Wagner, G. 2018b. Information and Process Modeling for Simulation – Part I: Objects and Events. Journal
of Simulation Engineering 1, 1–25, 2018. Available from https://articles.jsime.org/1/1.

• Williams, R.J. 2016. Stochastic Processing Networks. Annual Review of Statistics and Its Application 3:1,
323–345.

 ii

http://www.omg.org/spec/BPMN/2.0
https://articles.jsime.org/1/4/Unity-and-Diversity-of-Simulation
http://ie.technion.ac.il/serveng/Lectures/Loch.pdf
https://scholarworks.gvsu.edu/cgi/viewcontent.cgi?article=1006&context=books
https://www.informs-sim.org/wsc17papers/includes/files/056.pdf
https://www.informs-sim.org/wsc17papers/includes/files/056.pdf
https://dpmn.info/spec
https://articles.jsime.org/1/1

Information and Process Modeling for Simulation

– Part II: Activities and Processing Networks

Appendix A: OEM Elements

OEM extends UML Class Diagrams by adding the categories ("stereotypes") listed in the following table.

Name OEM language level UML stereotype Category of

object type basic OEM «object type» Class

event type basic OEM «event type» Class

exogenous event type basic OEM «exogenous event type» Class

random variate sampling
function

basic OEM «rv» Operation

activity type OEM-A «activity type» Class

resource role OEM-A
«resource role» (in short,
«res»)

Association End

resource pool OEM-A
«resource pool» (in short,
«pool»)

Association End

parallel participation
(multiplicity)

OEM-A «parallel» Association End

resource type OEM-A «resource type» Class

entry node OEM-PN «entry node» Object

processing node OEM-PN «processing node» Object

exit node OEM-PN «exit node» Object

OEM/DPMN extends BPMN Process Diagrams by adding the modeling elements listed in the following table.

Name OEM/DPMN language level Visual notation

DPMN Data Objects with event
rule variable declarations and state
change statements

basic DPMN

o1: O
[o1 = e.object]
--
If o1.prop1 > 1 THEN o1.prop2 := 2

Delay annotations of Sequence
Flow arrows

basic DPMN
+delay

Event property assignment
annotations of Sequence Flow
arrows

basic DPMN

Resource-Dependent Activity Start
arrows pointing to a Resource-
Constrained Activity

DPMN-A BA

Processing Object Flow arrows
pointing to a Processing Node

DPMN-PN «processing node»
Node1

«processing node»
Node2

 iii

Information and Process Modeling for Simulation

– Part II: Activities and Processing Networks

Index

 iv

	Table of Contents
	List of Figures
	List of Tables
	1. Introduction
	1.1. Object Event Modeling
	1.2. Ontological Considerations
	1.3. Object Event Simulation

	2. Simple Activities
	2.1. Conceptual Modeling of Simple Activities
	2.2. Design Modeling of Simple Activities

	3. Resource-Constrained Activities
	3.1. Conceptual Modeling of Resource-Constrained Activities
	3.2. Resource-Constrained Activities in Simulation Design Models
	3.3. The Allocate-Release Modeling Pattern

	4. Processing Activities and Processing Networks
	4.1. Conceptual Modeling of Processing Networks
	4.2. Processing Network Design Models
	4.3. Proprietary terminologies and diagram languages

	5. Transformation Activities
	Acknowledgements
	Bibliography
	Appendix A: OEM Elements
	Index

