I nfor mation and Process M odeling for Simulation
—Part I1: Activitiesand Processing Networks

Activities and Processing Networks

Gerd Wagner G.Wagner@b-tu.de

Thistutorial articleis Part |1 of a series of three articles starting with Information and Process Modeling for
Smulation — Part |: Objects and Events.

Copyright © 2019-2020 Gerd Wagner (CC BY-NC)
Published 2020-09-17. Also available as PDF.

Abstract
Thisarticle (1) reports new research resultsin the area of business process modeling and simulation, and (2)
shows, in the style of atutorial, how to use UML Class Diagrams and DPMN Process Diagrams for modeling
Activities and Processing Networks. The state structure of a systemis captured by a UML Class Diagram,

which defines the types of objects, events and activities underlying a DPMN Process Diagram that captures
the dynamics of the system in the form of a set of event rules. Part | of the tutorial presents the Object Event

mailto:G.Wagner@b-tu.de
https://articles.jsime.org/1/1
https://articles.jsime.org/1/1
https://creativecommons.org/licenses/by-nc/4.0/
Activities_files/Activities.pdf

Modeling (OEM) paradigm and a basic OEM approach for modeling discrete event simulations based on
Objects and Events with UML Class Diagrams and DPMN Process Diagrams. In this second part, the basic
OEM approach is extended by considering Activities and Processing Networks. Part 11 will show how to add
the modeling concepts of Agents with Perceptions, Actions and Beliefs, resulting in ageneral agent-based
Discrete Event Simulation modeling framework.

Information and Process Modeling for Simulation
— Part II: Activities and Processing Networks

Table of Contents

LSt OF FIQUIES ...ttt ettt b e b bt e et b et b et b e e b e s e eb e se b e s e eb e s e e bt s e e bt s b e st e b et et et ebeneebe e ii
LI o 1= o] = S SETTTRPEUTTS ST iv
IO g1l [0t 1o o TSSOSO TP ST PSSR 1
1.1. ObJECt EVENE MOUEIINGeovieiteiiteieete ettt ettt b et bbbttt 1
U2 ®) (o] ToTo Lo I @00 'S To L= = 1 o] <R 5
1.3. ODJECt EVENt SIMUIBLIONotiieiiiiee ettt e e e se et aeeb e s ae bt sbesbesaesbenbeseeseennan 6
2. SIMPIE ACHVITIES ..ttt etk b e e b e e bt s e bt s et b e st bt b et e b et e b et et e e b et e 10
2.1. Conceptual Modeling of SIMPIE ACHVITIES ...c..cveeeeeeeece et nnens 10
2.2. Design Modeling of SIMPle ACHVITIESo.ciiiiiiirie et 11
3. ReSOUrCE-COoNSIraiNEd ACHIVITIES ...cveeeeieeeeceesere sttt s e et e e e e ese e e eneesensesnesrenes 14
3.1. Conceptual Modeling of Resource-Constrained ACHIVITIEScovcvcereie i 16
3.2. Resource-Constrained Activities in Simulation Design MOEIS ..o 26
3.3. The Allocate-Release MOAEING PaILEINcccccueieeieiceceeese e srens 35
4. Processing Activities and Processing NEWOIKSco.ooiiiiiiinenee e e e 40
4.1. Conceptual Modeling of Processing NEIWOIKScuoiirrinieiieeieese e 42
4.2. Processing Network DEeSIgN MOELScoceiiiiiieie ettt st e 43
4.3. Proprietary terminologies and diagram [aNQUBOEScoererererierirerine st 46
5. TransfOrmMation ACHVITIESccccvciriiieesese s e se e e e s e sae st s tesaesae e teseensenaeeeneesensenseesensessessens 48
F o 011 =0 o T 0=) i
2T ol T Too r="o] oV TP O PTSTPRRSTRTURPRT ii
APPENdiX Al OEM EIBMENEScooeiieice ettt b e s b e e eb e e b e s snenea iii
T P iv

Information and Process Modeling for Simulation
— Part II: Activities and Processing Networks

List of Figures

1-1. A conceptual information model of a manufacturing Workstation SyStemccccceeverernereseneeseeseeeeas 2
1-2. A conceptual process model of a manufacturing Workstation SYSteMcccvevevereresenereeseeresesese e 2
1-3. An information deSigN MOGELcceiiiiiiiiie et e e e seese e e restesbesaesbesteseesrenean 3
1-4. A process design model in the form of a DPMN Process Diagramcccccoeeeeenenenene e seesee e 4
1-5. An ontology of the core categories of individuals of the OEM& S paradigmc.cccverrennennenecneennene 5
1-6. A model of the core classes of individuals an OE simulator has to deal with at runtime.c.cccccevenene 6
2-1. Introducing an activity typein a conceptual information model of a single workstation system. 10
2-2. Introducing an activity type in a conceptual process model of a single workstation system.c.ccoceeeee. 10
2-3. Going from basic OEM to OEM-A class models by introducing activity types.ccccoeevernennieneennes 11
2-4. Going from basic DPMN to DPMN-A process models by introducing Activity rectangles.cc.ccoeue.e. 12
2-5. Allocating and re-all ocating the workstation as a resource of Processing activitiesccoccccevevecvecennenn 13
3-1. The resources required for performing an activity include the activity's performer. ... 15
3-2. Activity types may have special properties representing reSOUrCe rolES.ovvvererereeerieereereeseeseenes 16
3-3. A conceptual information model of the activity type "examinations' with resourceroles.cccceevnenee. 17
3-4. Adding two resource pools for medical departments.cccoeccieiniecie s e 18
3-5. A conceptual process model based on the information model of Figure 3-4.ocooiiiiiiciiicinnneee 19
3-6. A conceptual information model with doctors and patients as PEOPIE.ccvveeveierernerneree e 20
3-7. Adding the activity type "walks to room" to the conceptual information model.cccccevevvivcevercennne 21
3-8. A conceptual process model based on the information model of Figure 3-7.ooveevevcccccveececeeeseenens 22
3-9. An improved process model based on the information model of Figure 3-7.coocoeiiiiicieieiereeee 23
3-10. Displaying the process owner and activity performersin a conceptual process model.ccooeveveneienens 25

3-11. Adding parallel participation multiplicities for rooms participating both in walks and examinations at the
LSS 10 0T U T SRRSO 26

3-12. Aninformation model for the simplified design with the resource counters nmrOfRooms and

L0005 o ox o =TSRSS 27
3-13. A process design model based on the information design model of Figure 3-12. ... 28
3-14. An OEM-A class model with resource object types for modeling resource roles and pools. 29
3-15. A process design model based on the information design model of Figure 3-14.cccocvvivinninnennene, 30
3-16. Any resource type R extends the pre-defined object type RESOUr CEcvvvvvcevieveeicieree e 30
3-17. A simplified version of the model Of FIQUIe 3-14 ... e 31
3-18. An OEM class diagram modeling a single workstation system with resource-constrained processing

o LY =SSR 32
3-19. An information design model for decoupling the allocation of rooms and doctors.c.cccceeevveceerennnne. 33
3-20. A process design model based on the information design model of Figure 3-19.cccociinininiinnnns 33
3-21. Representing the process owner as a Pool and activity performers as Lanesin a process design model.
... 34
3-22. A conceptual modeling pattern for a sequence of resource-constrained actiVvitiescccocveevenierenenn. 35
3-23. Using resource-dependent activity start arrows in a conceptual process model.ccoeoveeverreneneene 36

Information and Process Modeling for Simulation
— Part II: Activities and Processing Networks

3-24. Displaying the implicit allOCate-TEl€aSE SLEPS.coiriiirieiieer e e 37
3-25. Modeling WOorkStation as @ rESOUICE LYccueeieieiieeiesesiesieieseesee e e s e te e sresrestestesr e testesaesaesaeneeseesenses 37
3-26. A simplified version of the workstation process model using a resource-dependent activity start arrow.
... 38
3-27. A simplified version of the medical department information model with Doctor and Room as resource

(37 81T O P TR U PRSPPI 38
3-28. A simplified version of the medical department process model using resource-dependent scheduling
BITOWS. ..ttt b bbb bbb b e b b e e b S h e S b S E e S4B e e e e e e e e e e b e b e R R R R R e e 39
4-1. Resource-constrained activities involving processing objects are processing activities.ccccveveenene. 40
4-2. A conceptual OEM class model defining built-in types for conceptual PN modelingccoccceveineenen. 42
4-3. A PN model using the new DPMN modeling elements of PN Node rectangles and PN Flow arrows......... 43
4-4. A DPMN-PN process diagram with an Event Scheduling arrowcccooeveieveceeeeceseeese e 43
4-5. An OEM class design model defining built-in types for making PN design modelsccccocevineieneenen. 44
4-6. A PN model of aworkstation system using PN Node rectangles and PN FIOW arfowscocceverereenne 45
4-7. A PN model of aworkstation system where parts may have to be reworkedoccocververncnnicneeennene, 45
4-8. A PN model using the new DPMN modeling elements of PN Node rectangles and PN Flow arrows......... 45
4-9. An Arena diagram for the DMV MOCEcooiiiiiiiii e e s 46
4-10. An AnyLogic diagram for the DMV model (imposing Java naming SYNtax)c.ccceeeererenenesenesenens 47

Information and Process Modeling for Simulation
— Part II: Activities and Processing Networks

List of Tables

4-1. Comparison of different terminologies used for the same PN modeling ConCepts.coovvvvreereenccrniens 46

Information and Process Modeling for Simulation
— Part II: Activities and Processing Networks

Chapter 1. Introduction

Object Event (OE) Modeling and Simulation (M&S) is anew general Discrete Event Simulation (DES)
paradigm based on the idea that both conceptual models for DES and DES design models consist of (1) an
information model and (2) a process model.

In the case of conceptual modeling, an information model describes the types of objects and events representing
the main entities of the real-world system under investigation, while a process model describes its dynamicsin
the form of a set of conceptual event rule models that capture the causal regularities of the system.

In the case of simulation design modeling, an information design model prescribes (defines) the types of all
objects and events that are relevant for the purpose of a simulation study, thus defining the state structure of
aDES system, while a process design model defines the dynamics of a DES system by defining, for all event
types of the underlying information model, an event rule design model that specifies the state changes and
follow-up events implied by the occurrence of an event of that type.

In thefirst part of this article series, (Wagner 2018b), we have introduced a variant of the Business Process
Modeling Notation (BPMN), called Discrete Event Process Modeling Notation (DPMN), and have shown how
to use UML Class Diagrams and DPMN Process Diagrams for making basic OE models defining a set of object
types OT, a set of event types ET, and a set of event rulesR. In (Wagner 2017a), we have shown that (a) these
three sets define a state transition system, where the state space is defined by OT and ET, and the transitions are
defined by R, and (b) such atransition system represents an Abstract State Machine in the sense of Gurevich
(1985). Thisfundamental characterization of an OE model provides aformal (operational) semantics for OE
Simulation (OES) by defining an OES formalism that any OE simulator has to implement.

In this second part, we extend basic OEM/DPMN in two steps by adding support for (1) resource-constrained
activities and (2) GPSS/SIMAN/Arena-style processing activities and processing networks (PNS).

Modeling resource-constrained activities has been amajor issue in DES since itsinception in the nineteen-
sixties, while it has been neglected and is still considered an advanced topic in the field of Business Process
Modeling (BPM). BPMN only provides partial support for modeling resource-constrained activities. It allows
assigning resources to activities, but it does not allow modeling resource pools, and it does neither allow
specifying resource cardinality constraints nor parallel participation multiplicity constraints.

Processing objects enter PNsviaarrival events at an entry node and then flow through one or more processing
nodes where they are subject to processing activities before they leave the system at an exit node via a departure
event. The first extension, OEM/DPMN-A, comprises five new information modeling categories (" stereotypes)
and one new process modeling element, while the second extension, OEM/DPMN-PN, comprises a set of

four pre-defined object types and three pre-defined event types, three new (node type) categories and one new
process modeling element, aslisted in tablesin Appendix A: OEM Elements.

1.1. Object Event Modeling

Asan examplefor illustrating basic OEM& S, asintroduced in Part | (Wagner 2018b), we present asimple

OE model of amanufacturing workstation that receives parts and stores them in its input buffer for processing
them successively. Such amodel consists of (1) a conceptual model describing the real-world domain, and (2) a
simulation design model prescribing a certain computational solution for the purpose of a simulation study. Both
conceptual models and design models consist of an information model describing/defining the system's state
structure and a process model describing/defining the system’s dynamics. An information design model defines
the object and event types for a corresponding process design model.

Conceptual M odel

Chapter 1. Introduction 1

Information and Process Modeling for Simulation
— Part II: Activities and Processing Networks

A conceptual information model of aworkstation system, defining two object types and four event types, is
shownin Figure 1-1.

Figure 1-1. A conceptual information model of a manufacturing workstation system

* 0.1
«object type» «object type»
parts wor kstations
waiting parts
1 * 1
«event type»
part arrivals
* *
«event type»

processing startg

«event type»
processing ends|

«event type»
part departureq

As expressed by the associations between the four event types and the two aobject types, for all four types of
events, there are the same two types of objects participating in them: parts and workstations, implying that each
event of these four types involves a specific part and a specific workstation.

Notice that the input buffer (filled with waiting parts) is modeled as an association end with name waiting parts
at the parts side of the association between parts and workstations, expressing the fact that at any point in time,
aworkstation has zero or more parts waiting in itsinput buffer for being processed.

A conceptual process model of this system, describing four causal regularitiesin the form of event rules, one
for each type of event, is shown in Figure 1-2 in the form of a BPMN Process Diagram using Event circles
connected with Sequence Flow arrows expressing (conditional) causation, and Data Objects attached to Event
circles.

Figure 1-2. A conceptual process model of a manufacturing workstation system

i get part from)
';')Tff)flétr ------------------ -1 workstation

.
! remove part

. e 0
rocessini .
add part to ' p start 9. H

Oetettn e 3—>0O
N\ N\
part arrival processing
omd part departure

input buffer
not empty

The four event rules described by this model are

1. When apart arrives, it is added to the input buffer and, if the workstation is available, there will be a
processing start event for processing the newly arrived part.

Chapter 1. Introduction

Information and Process Modeling for Simulation
— Part II: Activities and Processing Networks

2. When aprocessing start event occurs, the next part from the input buffer is being processed and a
processing end event is caused to occur some time later (after the processing time has elapsed).

3. When aprocessing end event occurs, thiswill cause a part departure event and, if the input buffer is not
empty, another processing start event involving the next part from the buffer.

4. When apart departure event occurs, the processed part will be removed from the workstation.

Design M odel

A simulation design model is based on a conceptual model. Depending on the purposes/goals of a simulation
study, it may abstract away from certain elements of the real-world domain described by the conceptual model,
and it adds computational elements representing design decisions, such as random variables expressed int he
form of random variate sampling functions based on specific probability distributions for modeling the random
variation of certain system variables.

An information design model of the single workstation system described above is shown in Figure 1-3. This
model defines the multi-valued wai t i ngPar t s association end to be ordered, which means that it corresponds
to amulti-valued reference property holding an ordered collection (such as an array list or aqueue) asitsvalue.

The information design model of Figure 1-3 defines that a PartArrival event must reference both a Part

and a WorkStation, representing situations where specific parts arrive at specific workstations. Notice that,
computationally, this model requires creating new Part objects (or retrieving them from an object pool) before a
new PartArrival event is created (or scheduled), whileit is more common in simulation models to create a new
Part object only when an arrival event has occurred, which can be modeled by defining a multiplicity of 0..1 for
the Part end of the PartArrival-Part association (with the meaning that PartArrival has an optional, instead of a
mandatory, reference property with name part).

Figure 1-3. An information design model

*
«object type» { ordered} 0.1 «object type»
Part WorkStation
arrivalTime : Decimal waitingParts status : WorkstationStatusEL
1 1 «enumeration»
«exogenous event type» * WorkstationStatusl
PartArrival AVAILABLE
BUSY

«rv» recurrence() : Decimal {Tri(3,4,8)

«event type» *
ProcessingStart

«rv» processingTime() : Decimal { Exp(1/6)

«event type»
ProcessingEnd|

Notice that the model definestwo class level operations (designated with the stereotype «rv») implementing
random variate sampling functions: Part Arri val : : recurr ence() complieswith atriangular
probability distribution with minimum, mode and maximum parameter values 3, 4 and 8, while
ProcessingStart:: processi ngTi me() complieswith an exponential distribution with an event rate
parameter value of 6.

Chapter 1. Introduction 3

Information and Process Modeling for Simulation
— Part II: Activities and Processing Networks

A process design model based on the object and event types defined by the information design model of Figure
1-3 and derived from the conceptual process model of Figure 1-2 isshown in Figure 1-4.

Figure 1-4. A process design model in the form of a DPMN Process Diagram

ws: WorkStation

ws: WorkStation [VY_S__T_E?.YY.OrkStatlon]
[ws = a.workStation] waitingParts.pop()
T IF waitingParts.length = 0
waitingParts.push(a.part) THEN status = AVAILABLE

ps:Processing

A
: : Start +ProcessingStart.
ws.status = AVAILABLE rocessingTime!
<> -)L 9 0 D)S pe:ProcessingEnd

aParAmival ErkStation = WS '.’ T Erksmtlon = ws T
1> % [ws.waitingParts.length > 0]
ws: WorkStation '
[ws = ps.workStation] |
--------------------- workStation := ws
status := BUSY

Notice that, since al events happen at the same workstation, all three event scheduling arrows are annotated
with the same event property assignment wor kSt ati on : = ws, which simply propagates the object reference
to the given workstation along the event scheduling chain. Such property propagation assignments (in event
property assignment annotations), where a property value of afollow-up event is set to the corresponding
property value of the scheduling (or triggering) event, will be omitted (asimplied by event types having the
same property hames) for avoiding to clutter the process model diagrams.

A DPMN Process Diagram, like the one shown in Figur e 1-4, can be split up into a set of event rule diagrams,
one for each of its Event circles, as shown in the following table. This reduction of a DPMN process design
model to a set of event rule design models, together with the operational semantics of event rules presented in
(Wagner 20174), provides the semantics of DPMN Process Diagrams.

Notice that an event rule design model can also be expressed textually in the form of a pseudo-code block with
four parts: part 1 indicates the triggering event type and declares arule variabl e representing the triggering
event, part 2 declares further rule variables and initializes them, part 3 contains a state change script consisting
of state change statements, and part 4 schedules follow-up events.

Rule design model Pseudo-code

ws: WorkStation i .
[ws = a.workStation] ON a:PartArrival
waitingParts.push(a.part) ws: WorkStation
A ws := aworkStation
é [ws.status = AVAILABLE] >© ws.waitingParts.push(a.part)
< —

.] e] IF ws.status= AVAILABLE

aPartarmival EﬂkStation =ws Progessing THEN SCHEDULE ProcessingStart(workStation:=ws)

Chapter 1. Introduction 4

Information and Process Modeling for Simulation
— Part II: Activities and Processing Networks

ps:Processing

Start processingStart, rocessingend ON ps:ProcessingStart
processingTime()
L > ws : WorkStation
8 ErkStation = ws ws := ps.workStation
Vi ws.status := BUSY

s: WorkStation . .
[w;N = ps.workStIation] SCHEDULE ProcessingEnd(workStation:=ws)

status=BUSY DELAYED BY ProcessingStart.processingTime()

ws: WorkStation

[ws = pe.workStation] ON pe:ProcessingEnd

waitingParts.pop() ws: WorkStation
IF waitingParts.length = 0 — ;
THEN staius := AVAILABLE ws = peworkStation
A : "
: Progessing ws.waitingParts.pop()
[ws.waitingParts.length > 0] IF ws.waitingParts.length = 0
K >© THEN ws.status := AVAILABLE
pe:ProcessingEnd . - IF wswaitingParts.length > 0
workStation := ws THEN SCHEDUL E ProcessingStart(workStation:=ws)

1.2. Ontological Considerations

Ontologically, an activity is acomposite event (composed of at least a start and an end event) with aduration
greater than zero, performed by an agent (a human or another living being, arobot or another artificial agent, or
an organization or another social agent). As opposed to activities, activity start and end events are instantaneous
(zero-duration) events.

As an event, an activity has objects that participate in it. In the real world, an activity has at |east one
participant: the performer of the activity. Consequently, a conceptual model should, for each activity type,
include the type of objects that play the performer role for activities of that type, as described by the model
shown in Figure 1-5.

Figure 1-5. An ontology of the core categories of individuals of the OEM& S paradigm

entities

activities

| instantaneous events |
N\ 1
1

Chapter 1. Introduction 5

Information and Process Modeling for Simulation
— Part II: Activities and Processing Networks

However, in asimulation design model we may |eave the performer of an activity implicit and model an activity
without modeling any participant. Consequently, a basic OE simulator, the core classes of which are described
in Figure 1-6, does not need to support the distinction between objects and agents.

A discrete process (instance) consists of a partially ordered set of events that happen in a coherent spatio-
temporal region determined by the events' participants and the causal regularitiesinvolved. When two or more
events within a process have the same order rank, this means that they occur simultaneously.

A business process (instance) is a discrete process that happens in the context of an organization. Typically,
abusiness processis an instance of a business process type defined by an organization (or organizational

unit), which is the owner of the business process type, in the form of a process model. Notice that this concept
includes business system processes, where many business actors perform activities for handling many business
casesin parallel. Consequently, it is more genera than the common concept of a business process as a case-
handling process.

1.3. Object Event Simulation

The Object Event Simulation (OES) paradigm is based on the idea of executing an OE model starting with an
initial simulation state by successively applying the event rules of the model to the evolving simulation states.

Figure 1-6. Amodel of the core classes of individuals an OE simulator has to deal with at runtime.

Entity

id[0..1] : Integer <]_

namef0..1] : String

Event
L{occurrenceTime[0..1] : Integer (]
startTime[0..1] : Integer \
_ 7 |duration[0..1] : Integer L \
«invariant» Z[& «invariant»
{occurrenceTime {duration > O}
= gtartTime | I nstantaneousEvent |
+ duration} /
/

«invariant»
{duration = 0}

ActivityEnd

Notice that the occurrence time of an activity is the time when it completes, that is, it is equal to startTime +
duration. Typically, the duration of an activity in asimulation run is known, and set, when it is started. An
activity typeis normally defined with afixed duration or arandom variable duration for al activities of that
type. Thisallows a simulator to schedule the activity's end event when the activity is started. However, in
certain cases, an activity type may not define a preset duration, but |eave the duration of activities of that type
open. When such an activity is still ongoing, it does only have a start time, but no duration and no occurrence
time.

The OESformalism

Chapter 1. Introduction 6

Information and Process Modeling for Simulation
— Part II: Activities and Processing Networks

The OEM& S paradigm is based on the OES formalism presented in (Wagner 2017a), which is summarized
below.

Both object types and event types are defined in the form of classes: with aname, a set of properties and a set
of operations, which together define their signature. A property is essentially defined by a name and arange,
which is either a datatype (like Integer or String) or another object type.

A set of object types OT defines a predicate-logical signature as the basis of alogical expression language LoT:
each object type defines a unary predicate, and its properties define binary predicates. A state change language
Cort based on OT defines state change statements expressed with the help of the object type names and property

names defined by OT. In the simplest case, state change statements are property value assignments like 0.p1 := 4
or 0.p1 := 0.p2 Where 0 is an object variable and p1, p2 are property names.

A set of objects O = {01, 0y, ...0n} Where each of them has a state in the form of a set of dots (property-value
pairs) represents a system state, that is a state of the real-world system being modeled and simulated. A system
state O can be updated by a set of state changes (or, more precisely, state change statements) # # Cot with the
help of an update operation Upd. For instance, for a system state O1 = {01} with 01 ={ p1: 2, p2: 5} and a set of
state changes #1 = { 01.p1 := 01.p2 } we obtain

Upd(Og, #1) ={{ p1: 5 p2: 5}}
An event expression is aterm E(x) @t where

1. Eisanevent type,

2. xisa(possibly empty) list of event parametersxs, xo, ..., Xp according to the signature of the event type
E1

3. tisaparameter for the occurrence time of events.

For instance, PartArrival (ws)@t is an event expression for describing part arrival events where the event
parameter wsis of type WorkStation, and t denotes the arrival time. An individual event of type E isaground
event expression, e = E(v)@i, where the event parameter list x and the occurrence time parameter t have been
instantiated with a corresponding value list v and a specific time instant i. For instance, PartArrival(wsl)@1 isa
ground event expression representing an individual PartArrival event occurring at workstation wsl at time 1.

A Future Events List (FEL) isaset of ground event expressions partially ordered by their occurrence
times, which represent future time instants either from a discrete or a continuous model of time. The
partial order implies the possibility of simultaneous events, as in the example { ProcessingEnd(wsl) @4,
PartArrival (wsl) @4} .

An event routine is a procedure that essentially computes state changes and follow-up events, possibly based on
conditions on the current state. In practice, state changes are often directly performed by immediately updating
the objects concerned, and follow-up events are immediately scheduled by adding them to the FEL. For the OES
formalism, we assume that an event routine is a pure function that computes state changes and follow-up events,
but does not apply them, asillustrated by the examples in the following table.

Event rule name/ rule variables ON (event expression) DO (event routineg)

.= { ws.waitingParts.push(

(oA PartArriva (ws) @ t a.part)}

Chapter 1. Introduction 7

Information and Process Modeling for Simulation
— Part II: Activities and Processing Networks

Event rule name/ rule variables ON (event expression) DO (event routine)

IF ws.status= AVAILABLE

a: PartArriva THEN F!E =
ws: WorkStation { ProcessingStart(ws) @t+1}
' ELSE FE :={}

ws := a.workStation

RETURN ##, FE#

#:={ ws.status := BUSY}

'ps
. FE := { ProcessingEnd(ws) @t +
ps: ProcessingStart ProcessingStart(ws) @ t {. sSingEnd(.)@.t
; ProcessingStart.processingTime()}
ws. WorkStation

ws ;= ps.workStation RETURN ##, FE #

.= { ws.waitingParts.pop()}
|F ws.waitingParts.length = 0
THEN # :=##{ws.status :=

rpE AVAILABLE}

pe: Processingend ProcessingEnd(ws) @ t IF ws.waitingParts.length > 0

ws. WorkStation THEN FE :=

ws := pe.workStation { ProcessingStart(ws)@t+1}
ELSEFE :={}

RETURN ##, FE #

An event rule associates an event expression with an event routine F:
ON E(x)@t DO F(t, x),

where the event expression E(x) @t specifies the type E of events that trigger the rule, and F(t, x) isafunction
call expression for computing a set of state changes and a set of follow-up events, based on the event parameter
values x, the event's occurrence timet and the current system state, which is accessed in the event routine F for
testing conditions expressed in terms of state variables.

An OE model based on a state change language Cot and a corresponding update operation Upd is a triple #0OT,
ET, R#, consisting of a set of object types OT, event types ET and event rules R.

An OE simulation (system) state based on an OE model #OT, ET, R#isatriple S=#t, O, E# with t being the
current smulation time, O being a system state (a set of objects instantiating types from OT), and E being a set
of imminent events to occur at times greater than t (and instantiating types from ET), also called Future Event
List (FEL).

Anevent ruler = ON E(x)@t DO F(t, X) can be considered as a 2-step function that, in the first step, maps an
event e = E(v)@i to a parameter-free state change function re = F(i, v), which maps a system state O to a pair
##, FE # of system state changes # # Cot and follow-up events FE. When the parameterst and x of F(t, X) are
replaced by the valuesi and v provided by a ground event expression E(v)@i, we aso simply write F; y instead
of F(1i, v) for the resulting parameter-free state change function.

Chapter 1. Introduction

Information and Process Modeling for Simulation
— Part II: Activities and Processing Networks

We say that an event rule r istriggered by an event e when the event's type is the same as the rul€'s event type.
When r istriggered by e, we can form the state change function re = Fj ,, and apply it to a system state O by
mapping it to a set of state changes and a set of follow-up events:

re(0) = Fi(Q) = ##, FE#

We can illustrate this with the help of our workstation example. Consider the rule rpa defined in the table above
triggered by the event PartArrival (wsl) @1 in state Og = { wsl.status: AVAILABLE, wsl.waitingParts: []}. We
obtain

rpa(Qo) = F1wsi(Oo) =##1, FE1 #
with #1 = { wsl.waitingParts.push(a.part)} and FE; = { ProcessingStart@2} .
An OE model defines a state transition system where

1. A stateisasimulation state S= #t, O, E#.

2. A transition of asimulation state S consists of

1. advancing t to the occurrence timet' of the next events NE # E, which is the set of al imminent
events with minimal occurrence time;

2. processing all next events e # NE by applying the event rules r # R triggered by them to the
current system state O according to

re(Q) = ##e, FEa#

resulting in a set of state changes# = # {#c | e# NE } and a set of follow-up events FE = # { FE¢ |
e#NE}.

such that the resulting successor simulation stateis S = #t', O', E' #withO' = Upd(O, #) andE' = E #
NE # FE.

Notice that the OES formalism first collects all state changes brought about by all the simultaneous next events
(from the set NE) of a simulation step before applying them. This prevents the state changes brought about by
one event from NE to affect the application of event rules for other events from NE, thus avoiding the problem
of non-determinism through the potential non-confluence (or non-serializability) of parallel events.

OE simulators are computer programs that implement the OES formalism. Typically, for performance reasons,
discrete event simulators do not first collect all state changes brought about by all the simultaneous next events
(the set NE) of asimulation step before applying them, but rather apply them immediately in each triggered
event routine. However, this approach takes the risk of an unreliable semantics of certain simulation modelsin
favor of performance.

OESjs—a JavaScript-based OE simulator
The OESjs simulator presented in (Wagner 2017b) implements the OES formalism by implementing (1) object
types as classes extending the pre-defined class oBIECT, (2) event types as classes extending the pre-defined

class eVENT, and (3) event rules asonEvent methods of event classes.

The OESjs simulator is available from the educational simulation website sim4edu.com.

Chapter 1. Introduction 9

https://sim4edu.com

ct type»

arts

Information and Process Modeling for Simulation
— Part II: Activities and Processing Networks

Chapter 2. Simple Activities

A simple activity is an activity with zero or more participants, none of which is having a special meaning (such

as being aresource or a processing object).

2.1. Conceptual M odeling of Simple Activities

Conceptually, an activity is a composite event that is temporally framed by a pair of start and end events.
Consequently, whenever amodel contains a pair of related start and end event types, like processing start and
processing end in the model of a manufacturing workstation shown on the left-hand side of Figure 2-1 and

Figure 2-2, they can be replaced with a corresponding activity type, like processing, as shown on the right-hand

side.

Figure 2-1. Introducing an activity type in a conceptual information model of a single workstation system.

waiting parts

«event type»

0.1
«object type»
workstations
* 1

part arrivals

«event type»

processing starts

«event type»

processing ends

«event type»

input
buffer

[
artto «

WS available e’ l
S T
O O—O—

part arrival

part departures

«object type»

0.1

parts

—

waiting parts

«event type»

«object type»
wor kstations

part arrivals

«activity type»

processing

«event type»

part departures

It is obvious that applying this replacement pattern leads to a conceptual and visual simplification of the models

concerned.

Figure 2-2. Introducing an activity type in a conceptual process model of a single workstation system.

get part from

.................. >

processing ¢

start ¢

workstation

*
.

processing
end

input buffer
not empty

part departure

—

add part to input buffer

G WS available
S ——]

part arrival

workstation
with input buffer

'
* remove part

input buffer
not empty

N
essing

» from worksta
'

part departurt

Chapter 2. Simple Activities

10

Information and Process Modeling for Simulation
— Part II: Activities and Processing Networks

2.2. Design Modeling of Simple Activities

Like in a conceptual model, also in adesign model, apair of corresponding activity start and end event types (or
Event circles), like Pr ocessi ngSt art and Pr ocessi ngEnd in the source models shown in Figure 2-3 and
Figure 2-4, can be replaced with a corresponding activity type (or Activity rectangles), like Pr ocessi ng, asin
the target models shown in these figures.

Extending basic OEM information design models by adding activity types

Figure 2-3. Going from basic OEM to OEM-A class models by introducing activity types.

*

ject type» {ordered} 0.1 «object type»
Part WorkStation
'i_mle : Decimal waitingParts status : WorkstationStatusEL .
1 «enumeration «object type» {ordered} 0.1 «object type»
«exogenous event type» X WorkstationStatusE | Part WorkStation
PartArrival AVAILABLE arivalTime: Decimal| |\ ngParts status : WorkstationStatusEL
BUSY
* [«rv» recurrence() : Decimal {Tri(3,4,8) 1 1 «enumeratic
«exogenous event type» * WorkstationS!
«event type» . PartArrival AVAILABLE
ProcessingStart BUSY
* |«rv» recurrence() : Decimal {Tri(3,4,8)
«rv» processingTime() : Decimal { Exp(1/6), —
. «activity type» *
«event type» Processing
ProcessingEnd|
«rv» time() : Decimal { Exp(1/6)

In the case of an information design model, this replacement pattern implies allocating al features (attributes,
associations and operations) of the classes defining the start and the end event type in the class defining the
corresponding activity type, possibly with renaming some of them. In the example of Figure 2-3, thereisonly
one such feature: the class-level operation Pr ocessi ngSt art : : processi ngTi me, which isallocated to
Processi ng andrenamedtoti ne.

Extending basic DPM N process design diagrams by adding Activity rectangles

Chapter 2. Simple Activities 11

Information and Process Modeling for Simulation
— Part II: Activities and Processing Networks

Figure 2-4. Going from basic DPMN to DPMN-A process models by introducing Activity rectangles.

ws: WorkStation

ws: WorkStation [ws = pe.workStation]
[ws = a.workStation] waitingParts.pop()
" IF waitingParts.length = 0
waitingParts.push(a.part) THEN status := AVAILABLE
) ps:Processing /:\

: : tart 4 processingStart. :
ws.status = AVAILABLE processingTime()
< — L/\ D\ pe:ProcessingEnd

.

a:PartArrival L ,‘3\ workStation =
ErkStatlon WS EworkStation T

.

L [ws.waitingParts.length > 0]
ws: WorkStation
[ws = ps.workStation]

status := BUSY

ws: WorkStation
[ws = p.workStation]

ws: WorkStation waitingParts.pop()

[ws = a.workStation] IF waitingParts.length = 0
___________________________ THEN status := AVAILABLE

waitingParts.push(a.part)

TR

uration = Processing.time()

d
<>[ws.status = AVAILABLE] > Q 'E)rkStation =ws

.
H .
a:PartArrival Lt L,’ p:Processing B

. 0

e

g
.

duration = Processing.time()
workStation = ws N
V4

ws: WorkStation
[ws = p.workStation]

[ws.waitingParts.length > 0]

status := BUSY

In the case of a process design model, the replacement pattern implies that an Event circle pair consisting of
an Event circle intended to represent an activity start event type and an Event circle intended to represent an
activity end event type, with an event scheduling arrow from the start to the end Event circle annotated by a

delay expression, is replaced by an Activity rectangle such that:

1. All Data Objects attached to the end Event circle get attached to the Activity rectangle (since an activity

occurs when it it is completed).

2. All event scheduling arrows going out from the end Event circle are turned into event scheduling arrows

going out from the Activity rectangle.

Chapter 2. Simple Activities

12

Information and Process Modeling for Simulation
— Part II: Activities and Processing Networks

3. All start event scheduling arrows are replaced with corresponding activity scheduling arrows having
an additional creation parameter assignment for the duration of a scheduled activity, which is set to
the delay expression defined for the end event scheduling arrow. In the example above, the duration
parameter in the annotation of the two activity scheduling arrowsis set to Processi ng: : ti me() inthe
target diagram, which isthe same asthe delay Pr ocessi ngSt art : : processi ngTi me in the source
diagram.

4. When the start Event circle has one or more attached Data Objects or any outgoing event scheduling
arrow that does not go to the end Event circle, then a start Event circle hasto be included in the Activity
rectangle for attaching the Data Object(s) and as the source of the outgoing event scheduling arrow(s).

This Activity-Sart-End Rewrite Pattern, which can also be applied in the inverse direction, replacing an
Activity rectangle with an Event circle pair, defines the meaning of an Activity rectanglein aDPMN diagram.
It allows reducing a DPMN-A diagram with Activity rectanglesto abasic DPMN diagram without Activity
rectangles.

Notice that, like the source model, a so the target model of Figur e 2-4 specifies three event rules:

1. On each part arrival, the arrived part is added to the workstation's input buffer and if the workstation's
statusis AVAILABLE, then anew Processing activity is scheduled to start immediately with aduration
provided by invoking the time function defined in the Processing activity class.

2. When a Processing activity starts, the workstation's status is changed to BUSY .

3. When a Processing activity ends, the processed part is removed from the input buffer and, if the input
buffer is not empty, a new Processing activity is scheduled to start immediately, otherwise (if the input
buffer is empty) the workstation's statusis changed to AVAILABLE.

An alter native process design model of the single workstation system

Based on the same information design model, shown in Figur e 2-3, we can make another process design model
of the single workstation system as an aternative to the target model of Figure 2-4. This aternative model
makes it more clear that aworkstation is, in fact, an exclusive resource of its processing activity. The concepts
of resources and resource-constrained activities are discussed in the following sections, and in Section 3.2, it

is shown how to simplify the basic DPMN model of Figure 2-5 by using the higher-level modeling elements
introduced in DPMN-A.

Figure 2-5. Allocating and re-allocating the workstation as a resource of Processing activities

ws: WorkStation

ws: WorkStation [ws = p.workStation]
[ws = a.workStation] wsReallocated: Boolean
wsAllocated: Boolean Smmmmmmmememeseeoooooooe-
___________________________ IF waitingParts.length = 0

IF status = AVAILABLE THEN status := AVAILABLE
THEN wsAllocated:= true; status := BUSY ELSE wsReallocated := true
ELSE waitingParts.push(a.part) p.part := waitingParts.pop()

A

[wsReallocated]

[wsAllocated]
O(; P p:Processing

a:PartArrival

Chapter 2. Simple Activities 13

Information and Process Modeling for Simulation
— Part II: Activities and Processing Networks

Chapter 3. Resource-Constrained Activities

A Resour ce-Constrained Activity is an activity where one or more participants play a Resource Role (such as
Performer). Typically, a Resource-Constrained Activity is a component of a business process that happensin
the context of an organization or organizational unit, which is associated with the activity as its Process Owner.

An activity of acertain type may require certain resources for being performable. At any point in time, a
resource required for performing an activity may be available or not. A resource is not available, for instance,
when itisisbusy or when it is out of order.

Summary

1. A Resource-Constrained Activity can only be started when the required resources are
available,

. Which participants of a Resource-Constrained Activity of type A play the role of aresource
isdefined in an OEM Class Diagram by special properties of A, called Resource Roles.

. Resource (Cardinality) Constraints are defined in an OEM Class Diagram in the form of
multiplicities of Resource Roles.

. Theresources that are available for being allocated to a planned activity are provided by
Resour ce Pools managed by Process Owners. A Resource Pool is modeled in an OEM Class
Diagram as a collection-valued reference property of the object type representing the Process
Owner.

. A Resource Typeis defined in an OEM Class Diagram as a special object type that has
aresource status attribute and is the range of both a Resource Role and a Resource Pool

property.

. A Resource-Dependent Activity Sart arrow is a high-level modeling element of DPMN
Process Diagrams, merging the semantics of event scheduling arrows with the Allocate-
Release modeling pattern.

. OEM-A extends basic OEM by adding activities, resource roles, resource constraints,
resource pools, resource types and resource-dependent activity start arrows. Notice that most
of these resource modeling elements are expressed in an OEM Class Diagram, and only
the possible event flows are expressed in a DPMN Process Diagram (representing an OEM
process model) with the help of Resource-Dependent Activity Start arrows.

Resources are objects of a certain type. The resource objects of an activity include its performer, as expressed in
the diagram shown in Figure 3-1. While in a conceptual model, describing areal-world system, a performer is
required for any activity, a simulation design model may abstract away from the performer of an activity.

For instance, a consultation activity may require a consultant and a room. Such resour ce constraints are defined
at the type level. When defining the activity type Consul t at i on, these resource constraints are defined in the
form of two mandatory associations with the object types Consul t ant and Roomsuch that both associations
ends have the multiplicity 1 ("exactly one"). Then, in asimulation run, anew Consul t at i on activity can only
be started, when both a Consul t ant object and a Roomobject are available.

Chapter 3. Resource-Constrained Activities 14

Information and Process Modeling for Simulation
— Part II: Activities and Processing Networks

For all types of resource-constrained activities, a simulator can automatically collect the following statistics:

1. Throughput statistics: the numbers of enqueued and dequeued planned activities, and the numbers of
started and completed activities.

2. Queue length statistics (average, maximum, etc.) of its queue of planned activities.

3. Cycletime statistics (average, maximum, etc.), where cycle time is the sum of the waiting time and the
activity duration.

4. Resource utilization statistics: the percentage of time each resource object involved is busy with an
activity of that type.

In addition, a simulator can automatically collect the percentage of time each resource object involved isidle or
out-of-order.

Figure 3-1. The resources required for performing an activity include the activity's performer.

0.1 process owner

1>

resources
1

performer

r esour ce-
constrained
activities

activities

/

«invariant»
{A performer
isaresource}

For modeling resource-constrained activities, we need to define their types. As can be seenin Figure 3-2, a
resource-constrained activity type is composed of

1. aset of propertiesand a set of operations, as any entity type,

2. aset of resour ceroles, each one having the form of areference property with a name, an object type as
range, and a multiplicity that may define aresour ce constraint like, e.g., "exactly one resource object of
thistypeisrequired” or "at least two resource objects of this type are required".

The resource roles defined for an activity type may include the performer role.

Chapter 3. Resource-Constrained Activities 15

Information and Process Modeling for Simulation
— Part II: Activities and Processing Networks

Figure 3-2. Activity types may have special properties representing resource roles.

properties

*

resource roles

operations

activity types
1 type
0.1 process owner
1. '*
* resources
1
entities
performer .
g *
activities

«invariant»
{A performer
isaresource}

These considerations show that a simulation language for simulating activities needs to allow defining activity
types with two kinds of properties: ordinary properties and resource roles. At least for the latter ones, it must
be possible to define multiplicities for defining resource constraints. These requirements are fulfilled by OEM
Class Diagrams where resource roles are defined as stereotyped properties using the stereotype «resource role»
or, shorter, «res».

The extension of basic OEM by adding the concepts needed for modeling resource-constrained activities (in
particular, resource roles with constraints, resource pools, and resource-dependent activity start arrows) is called
OEM-A.

3.1. Conceptual M odeling of Resour ce-Constrained Activities

Modeling resource-constrained activities has been a major issuein the field of Discrete Event Simulation
(DES) since its inception in the nineteen-sixties, while it has been neglected and is still considered an advanced
topic in the field of Business Process Modeling (BPM). For instance, while BPMN allows assigning resources
to activities, it does not allow modeling resource pools (see), and does neither allow specifying resource
cardinality constraints nor parallel participation multiplicity constraints (see).

In the DES paradigm of Processing Networks, Gordon (1961) has introduced the resource management
operations Seize and Release in the simulation language GPSS for allocating and de-allocating (releasing)
resources. Thus, GPSS has established a standard modeling pattern for resource-constrained activities,

which has become popular under the name of Seize-Delay-Release indicating that for simulating a resource-
constrained activity, its resources are first allocated, and then, after some delay (representing the duration of the
simulated activity), they are de-allocated (rel eased).

Resour cerolesand process owners

Chapter 3. Resource-Constrained Activities 16

Information and Process Modeling for Simulation
— Part II: Activities and Processing Networks

Asanillustrative example, we consider a hospital consisting of medical departments where patients arrive for
getting amedical examination performed by a doctor in aroom of the department. A medical examination, as
an activity, has four participants: a patient, a medical department, a doctor and aroom, but only two of them
play aresource role: doctors and rooms. This can be indicated in an OEM class diagram by using the stereotype
«resource role» for categorizing the association ends that represent resource roles, as shown in Figure 3-3.

Figure 3-3. A conceptual information model of the activity type "examinations" with resourceroles.

«object type» «object type»
doctors rooms

1 «resource role» 1 «resource role»
performer

«event type» «activity type»
patient arrivals examinations

* *

1 process owner

waiting line
«object type» «object type»
patients medical departments|
* 0.1
{ ordered}

process owner 1

Notice that both the event type patient arrivals and the activity type examinations have a (mandatory functional)
reference property process owner. Thisimplies that both patient arrival events and examination activities
happen at a specific medical department, which istheir process owner in the sense that it owns the process types
composed of them. A process owner is called "Participant” in BPMN (in the sense of a collaboration participant)
and visually rendered in the form of a container rectangle called "Pool".

In Figure 3-3, the resource role of doctorsis designated as the performer role. Alsoin BPMN, Performer is
considered to be a specia type of resource role. According to (BPMN 2011), a performer can be "a specific

individual, a group, an organization role or position, or an organization".[llln BPMN, the performer roleis
specialized into the HumanPerformer of an activity, which is, in turn, specialized into Potential Owner denoting
the "persons who can claim and work" on an activity of agiven type. "A potential owner becomes the actual
owner [...] by explicitly claiming” an activity. Allocating a human resource to an activity by leaving the choice
to those humans that play a suitable resource role is characteristic for workflow management systems, whilein
traditional DES approaches to resource handling, asin Arena and AnyLogic, (human) resources are assigned to
atask (asits performer) based on certain policies.

One of the main reasons for considering certain objects as resources is the need to collect utilization statistics
(either in an operational information system, like aworkflow management system, or in a simulation model)
by recording the use of resources over time (their utilization) per activity type. By designating resourcerolesin
information models, these model s provide the information needed in simulations and information systems for
automatically collecting utilization statistics.

Resour ce pools and resour ce allocation

[1] See Section 10.2.2 in the BPMN 2.0 specification. This enumeration should be extended by adding artificial agents, such as
robots, embedded systems and software systems.

Chapter 3. Resource-Constrained Activities 17

Information and Process Modeling for Simulation
— Part II: Activities and Processing Networks

In the hospital example, amedical department, as the process owner, isthe organizational unit that is
responsible for reacting to certain events (here: patient arrivals) and managing the performance of certain
processes and activities (here: medical examinations), including the allocation of resources to these processes
and activities. For being able to allocate resources to activities, a process owner needs to manage resource
pools, normally one for each resource role of each type of activity (if pools are not shared among resource
roles). A resource pool isacollection of resource objects of a certain type. For instance, the three X-ray rooms
of adiagnostic imaging department form a resource pool of that department.

Resource pools can be modeled in an OEM class diagram by means of special associations between object
classes representing process owners (like medical departments) and resource classes (like doctors and rooms),
where the association ends, corresponding to collection-valued properties representing resource pools, are
stereotyped with «resource pool», as shown in Figure 3-4. At any point in time, the resource objects of a
resource pool may be out of order (like a defective machine or a doctor who is not on schedule), busy or
available.

Figure 3-4. Adding two resource pools for medical departments.

«resource pool» *

«resource pogl

M

«object type» «object type»
doctors rooms

*

1 «resource role» 1 «resource role»
performer

«event type» «activity type»
patient arrivals examinations

% *
1 process owner
1 !)
N) «object type»
waiting line medical departments|

«object type»
patients

* 0.1 |dlocate a doctor()
{ ordered} allocate_a room() *

process owner 1

A process owner has special procedures for allocating available resources from resource pools to activities. For
instance, in the model of Figure 3-4, amedical department has the procedures "allocate a doctor" and "allocate
aroom"” for alocating a doctor and aroom to amedical examination. These resource allocation procedures
may use various policies, especialy for allocating human resources, such as first determining the suitability

of potential resources (e.g., based on expertise, experience and previous performance), then ranking them and
finally selecting from the most suitable ones (at random or based on their turn). See also (Arias et al 2018).

In the conceptual process model shown in Figure 3-5, a doctor and aroom are always allocated and rel eased
(de-allocated) together.

Chapter 3. Resource-Constrained Activities 18

Information and Process Modeling for Simulation
— Part II: Activities and Processing Networks

Figure 3-5. A conceptual process model based on the information model of Figure 3-4.

medical department medical department
IF doctor and room available IF waiting line empty
THEN allocate doctor and room THEN release doctor and room
ELSE add patient to waiting line ELSE fetch next patient

A I

doctor and room allocated -
<> P examinations

patient arrivals

another patient fetched

This process model describes two causal regularitiesin the form of the following two event rules, each stated
with two bullet points: one for describing all the state changes and one for describing al the follow-up events
brought about by applying the rule.

1. When anew patient arrives:

« if aroom and adoctor are available, then they are allocated to the examination of that patient;
otherwise, if aroom or a doctor is not available, the patient is added to the waiting line;

« if adoctor and aroom have been allocated, then start an examination of the patient.

2. When an examination is completed by a doctor in a particular room:

« if thewaiting line is empty, then the room and doctor are released; otherwise, if there are still
patientsin the line, the next patient is fetched to be examined by that doctor in that room;

* if another patient has been fetched, then start the examination of that patient.

These conceptual event rules describe the real-world dynamics of a medical department according to business
process management decisions. Changes of the waiting line and (de-)allocations of rooms and doctors are
considered to be state changes (in the, not necessarily computerized, information system) of the department,
asthey are expressed in Data Object rectangles, which represent state changes of affected objects caused by an
event in DPMN.

Notice that the model of Figur e 3-5 abstracts away from the fact that after allocating a room and a doctor,
patients first need to walk to the room before their examination can start. Such a simplification may be justified
if the walking time can be neglected or if there is no need to maximize the productive utilization of doctors who,
according to this process model, have to wait until the patient arrives at the room. Below, this model is extended
for allowing to allocate rooms and doctors in a decoupled manner such that patients have to wait for doctors,
and not the other way around.

Switching roles: doctors as patients

The same person who is adoctor at a diagnostic imaging department may be treated as a patient of that
department. It's awell-known fact that in the real world people may switch roles and may play several roles

at the same time, but many modeling approaches/platformsfail to admit this. For instance, the simulation
language (SIMAN) of the well-known DES modeling tool Arena does not treat resources and processing objects
("entities") asroles, but as strictly separate categories. This language design decision was a meta-modeling

Chapter 3. Resource-Constrained Activities 19

Information and Process Modeling for Simulation
— Part II: Activities and Processing Networks

mistake, as admitted by Denis Pegden, the main creator of SIMAN/Arena, in (Drogoul et al 2018) where he says
"it was a conceptualization mistake to view Entities and Resources as different constructs”.

In Figure 3-6, the above model is extended by categorizing the classes doctors and patients as «role type»
classes and adding the «kind» class people as a supertype of doctors and patients, we create the possibility that a
person may play both roles: the role of a doctor and the role of a patient, albeit not at the same time. The object
type categories «kind» and «role type» have been introduced to conceptual modeling by Guizzardi (2005).

Figure 3-6. A conceptual information model with doctors and patients as people.

«resource pool» *
«resource pogl»
«Kkind» :] «role type» «object type»
people doctors rooms
JAN *
1 «resource role» 1 «resource role»
performer
*
*
«event type» «activity type»
patient arrivals examinations
*
* *
* 1 process owner
1 1 *
o «object type»
waiting line medical departments|
«role type»
patients
* 0.1 |dlocate a doctor()
{ ordered} alocate_a room() *
process owner 1

Queueing planned activities

Whenever an activity is to be performed but cannot start due to a required resource not being available, the
planned activity is placed in a queue as awaiting job. Thus, in the case of amedical examination of a patient,
as described in the model of Figure 3-6, the waiting line represents, in fact, a queue of planned examinations
(involving patients), and not a queue of waiting patients.

This consideration points to ageneral issue: modeling resource-constrained activities implies modeling queues
of planned activities, while there is no need to consider (physical) queues of (physical) objects. Consequently,
even if area-world system includes a physical queue (of physical objects), an OEM-A model may abstract
away fromits physical character and consider it as a queue of planned activities (possibly including pre-
allocated resources). While a physical queue implies that there is a maximum capacity, a queue of planned
activities does not imply this. For instance, when a medical department does not require patients to queue up

in awaiting areafor obtaining an examination, but accepts their registration for an examination by phone, the
resulting queue of waiting patientsis not aphysical queue (but rather a queue of planned examinations) and
there is no need to limit the number of waiting patients in the same way as in the case of queuing up in awaiting
areawith limited space.

A planned activity can only start, when all required resources have been allocated to it. Thus, a planned
examination of a patient can only start, when both aroom and a doctor have been allocated to it. Let's assume
that when a patient p arrives, only aroom is available, but not a doctor. In that case, the available roomis
allocated to the planned examination, which is then placed in a queue since it till hasto wait for the availability

Chapter 3. Resource-Constrained Activities 20

Information and Process Modeling for Simulation
— Part II: Activities and Processing Networks

of adoctor. Only when a doctor becomes available, e.g., viathe completion of an examination of another
patient or viaan arrival of adoctor, the doctor can be allocated as the last resource needed to start the planned
examination of patient p.

As aconsequence of these considerations, the waiting line of amedical department modeled in Figure

3-6 as an ordered collection of patients is renamed to planned walks in Figur e 3-7. In addition, a property
planned examinations, which holds an ordered collection of patient-room pairs, is added to the class medical
departments. These model elements reflect the hospital's business process practice to maintain alist of patients
waiting for the allocation of aroom to walk to and alist of planned examinations, each with a patient waiting for
adoctor in an examination room.

Decoupling the allocation of multiple resour ces

For being more redlistic, we consider the fact that patients first need to be walked by nurses to the room
allocated to their examination before the examination can start. Thus, in the model of Figure 3-7, weadd a
second activity type, walks to room, involving people (typicaly, nurses and patients) walking to an examination

room.

Figure 3-7. Adding the activity type "walks to room" to the conceptual information model.

* — «resource pool» *
| «activity type» «resource role» 1
walkstoroom| « 1
«resource poql»
«kind» :] «roletype» «object type»
people doctors rooms
/\ -
Zﬁ 1 «resource role» 1 «resource role»
«role type» performer
nurses
*
*
«event type» «activity type»
patient arrivals examinations
*
* *
* 1 process owner
1 1 *
«object type»
planned walks medical departments
«role_type> planned examinations[*]
patients
* 0.1 |dlocate a doctor()
{ordered} alocate_a room() *
process owner 1

Chapter 3. Resource-Constrained Activities 21

Information and Process Modeling for Simulation
— Part II: Activities and Processing Networks

Figure 3-8. A conceptual process model based on the information model of Figure 3-7.

medical department

medical department

IF waiting line not empty
AND nurse available

IF waiting line not empty
AND room available

medical department THEn’\é;t%aall?ecrﬁFse \?V:TEE 1 THEN allocate nurse and re-allocate
IF room and nurse available ELSE release nurse gngt?eT:;ég ?(t)lgr?:
THEN allocate room and nurse IF doctor available IF there is still a pl d inati
THEN allocate doctor ere is still a planned examination
ELSE queue \L/jvglak new planned ELSE queue up a new THEN re-allocate doctor
planned examination ELSE release doctor
~ A

doctor allocated

v —— R
room allocated <————————P
GO—> walks to room | examinations]
il \)

t

patient arrivals
nurse re-allocated doctor re-allocated

room re-allocated

This process model describes three causal regularitiesin the form of the following three event rules:
1. When anew patient arrives:

* if aroom and anurse are available, they are allocated to the walk of that patient to that room,
otherwise a new planned walk is placed in the corresponding queue;

« if aroom has been alocated, then the nurse starts walking the patient to the room.

2. When awalk of apatient and nurse to aroom is completed:

« if thereis still aplanned walk in the queue and aroom is available, then the room is allocated and
the nurse is re-allocated to the walk of the next patient to that room.
if adoctor isavailable, sheis alocated to the examination of that patient, else a new planned
examination of that patient is queued up;

« if adoctor has been allocated, then the examination of that patient starts
if the nurse has been re-allocated, she starts walking the next patient to the allocated room.

3. When an examination of a patient is completed by a doctor in a particular room:

* if thereisstill a planned examination (of another patient in another room), then re-allocate the
doctor to that planned examination, €l se release the doctor;
if the waiting line is not empty, re-allocate the room to the next patient, else rel ease the room;

* if the doctor has been re-allocated to a planned examination, that examination starts;
if the room has been re-allocated to another patient, that patient starts walking to the room.

Notice that the process type described in Figur e 3-8 does not consider the fact that doctors have to walk to the
examination room too, which could be modeled by adding a doctors walks to room Activity rectangle after the
patients walks to room Activity rectangle.

For being able to collect informative utilization statistics, it is required to distinguish the total time aresourceis
allocated (its 'gross utilization') from the time it is allocated for productive activities (its 'net utilization'). Thus,

Chapter 3. Resource-Constrained Activities 22

Information and Process Modeling for Simulation
— Part II: Activities and Processing Networks

only examinations would be classified as productive activities, while walks to room would rather be considered
akind of set-up activities.

Re-engineering the process type by centralizing the re-allocation of resour ces

In the process type described in Figur e 3-8, the re-allocation of released resourcesis handled in the event rules
of activity end events:

» when anurse's and patient's walk to aroom ends, the nurseis free to be re-allocated; so if there is another
planned walk and aroom is available, the nurseis re-allocated to awalk of the next patient to that room;

» when an examination ends, its resources (a doctor and aroom) are re-allocated, if planned activities are
waiting for them.

This approach requires that the same re-allocation logic is repeated in the event rules of all activity types
associated with that type of resource, implying that all performers involved would have to know and execute
the same re-alocation logic. It is clearly preferable to centralize thislogic in asingle event rule, which can
be achieved by introducing release resource request events following activities that do not need to keep
resources allocated, as shown in Figur e 3-9 where the re-all ocation of doctors and rooms is decoupled from
the examination activities and centralized (e.g., in a special resource management unit) by adding the two
event types room release reguests and doctor release requests modeling simultaneous events that follow
examinations.

Figure 3-9. Animproved process model based on the information model of Figure 3-7.

medical department
medical department ical department=® | . mmmmmmmmmmmmmeeeeeeoees
_______________ ‘_)___________ nledlcaddepart_r_rj_e_r_\t IF waiting line not empty AND nurse available
IF room and nurse available IF doctor available THEN allocate nurse and re-allocate room to next patient's walk
THEN allocate room and nurse THEN allocate doctor ELSE release room
ELSE queue up a new planned ELSE queue up a new A
walk planned examination .
N

room release !
requests /K room re-allocated

doctor _/C

L
allocated
room allocated S i / doctor
<>——————Pp» walks to room examinations + Q release
l w requests

patient arrivals

nurse g
release doctor re-allocated

nurse requests .

re-allocated % .
: I
medical department medical department
IF waiting line not empty AND room available IF there is still a planned examination
THEN allocate room AND re-allocate nurse to next patient's walk THEN re-allocate doctor to it
ELSE release nurse ELSE release doctor

This process model describes an improved business process with six event rules:
1. When anew patient arrives:

« if aroom and anurse are available, they are allocated to the walk of that patient to that room,
otherwise a new planned walk is placed in the corresponding queue;

« if aroom has been alocated, then the nurse starts walking the patient to the room.

Chapter 3. Resource-Constrained Activities 23

Information and Process Modeling for Simulation
— Part II: Activities and Processing Networks

2. When awalk of a patient and nurse to aroom is completed:

« if adoctor isavailable, sheisalocated to the examination of that patient, else a new planned
examination of that patient is queued up;

« if adoctor has been allocated, then the examination of that patient starts; in addition, a nurse release
request isissued.

3. When anurse release request has been issued:

« if thewaiting lineis not empty and aroom is available, allocate the room and re-allocate the nurse
to the next patient, else release the nurse;

« if the nurse has been re-allocated to another patient, she starts walking that patient to the room.

4. When an examination is completed:

* [no state change]

» aroom release request isissued (e.g., by notifying a resource management clerk or the department's
information system), and, in parallel, a doctor release request is issued.

5. When aroom release request is received by a resource manager:

« if thewaiting line is not empty and anurseis available, allocate the nurse and re-allocate the room
to the next patient, el se release the room;

« if the room has been re-allocated to another patient, the nurse starts walking that patient to the
room.

6. When adoctor release request is received by aresource manager:

« if thereis still aplanned examination (of another patient in another room), then re-allocate the
doctor to that planned examination, €l se release the doctor;

« if the doctor has been re-allocated to a planned examination, that examination starts.

Notice that, in the general case, instead of scheduling several simultaneous release requests, each for asingle
resource, when an activity completes, asingle joint release request for all used resources should be scheduled,
allowing to re-allocate several of the released resources jointly.

Displaying the process owner and activity performers

The process owner and the involved performers can be displayed in an OEM process model by using a
rectangular Pool container for the process owner and Pool partitions called Lanes for the involved activity
performers, as shown in Figur e 3-10. Notice that, as opposed to BPMN, where lanes do not have a well-defined
meaning, but can be used for any sort of arranging model elements, DPMN L anes represent organizational
actors playing resource roles.

Chapter 3. Resource-Constrained Activities 24

Information and Process Modeling for Simulation
— Part II: Activities and Processing Networks

Figure 3-10. Displaying the process owner and activity performersin a conceptual process model.

medical departments

medical department
IF room available
THEN a room is allocated
ELSE patient is added to waiting line

-
.

medical department
IF doctor available
THEN a doctor is allocated
ELSE a new planned
examination is queued up

doctor allocated

room allocated

nurses

(e

medical department

patientarrivals A& A w | | e

IF waiting line not empty AND room available
THEN allocate room AND re-allocate nurse

&alks to room
A }

t O

S

to next patient's walk
re-allocated pyse ELSE release nurse
release
requests
medical department ' medical department
IF there is still a planned examination —P» examinations IF waiting line not empty

THEN re-allocate room to next patient
ELSE release room
7

. et
.
tel + Q room release requests
el \\

-~

re-allocated

THEN re-allocate doctor to it
ELSE release doctor

A
.

doctors

doctor room re-allocated
release

requests

Non-exclusive resour ces

In OEM, aresource is exclusive by default, that is, it can be used in a most one activity at the sametime, if no
parallel participation multiplicity is specified. For instance, in all information models above (e.g., in Figure
3-3), the participation associations between the resource classes rooms and doctors and the activity classes
walks and examinations do not specify any parallel participation multiplicity (for the association end at the side
of the activity class), but just the common (historical participation) multiplicity of "*" expressing that resources
participate in zero or more activities over time (without an upper bound).

OEM extends UML Class Diagrams by adding the association end stereotype «parallel» for expressing parallel
participation multiplicities.

A non-exclusive resource can be simultaneously used in more than one activity. The maximum number of
activities, in which a non-exclusive resource can participate at the same time, is normally specified at the type
level for all resource objects of that type using the upper bound of a parallel participation multiplicity. But
there may be cases where it should be specified at the level of individual resource objects. For instance, larger
examination rooms may accommodate more examinations than smaller ones.

A resource can be exclusive with respect to all types of activities (which isthe default case) or it can be
exclusive with respect to specific types of activities. For instance, in the model of Figure 3-11, aparallel
participation multiplicity of 0..1 is defined both for the participation of roomsin walks and in examinations.
This means aroom can participate in at most one walk and in at most one examination at the same time, which
isadifferent businessrule, allowing to walk patientsto aroom even if it is currently used for an examination,
compared to the model of Figure 3-3, alowing to walk patients to aroom only if it is currently not being used
for an examination.

Chapter 3. Resource-Constrained Activities 25

Information and Process Modeling for Simulation
— Part II: Activities and Processing Networks

Figure 3-11. Adding parallel participation multiplicities for rooms
participating both in walks and examinations at the same time.

0.1 «parallel»
«activity type» «resource role» 1
walkstoroom| « 1
«kind» :] «role type» «object type»
people doctors rooms

T

«role type»
nurses

«resourcerole» 1
performer

examinations

«activity type» | |

«resource role»

0.1

«parallel»

3.2. Resource-Constrained Activitiesin Simulation Design M odels

In simulation design models, resource-constrained activities can be modeled in two ways:

1. either abstracting away from the structure of resource object types and individual resource objects,
and only representing a resource object type in the form of a named resource pool with a quantity (or
counter) attribute holding the number of available resources, or

2. explicitly representing resource object types and individual resource objects of that type as members of a
collection representing a resource pool.

While the first approach is simpler, the second approach allows modeling various kinds of non-availability of
specific resources (e.g., due to failures or due to not being in the shift plan).

For any resource object type Res, the three operations described in the following table are needed.

Resour ce management . Resour ce counter
. General meaning Resour ce pool approach
operation approach
. test if the correspondin test if the number of
test if aresource of type ! P .I 9 .I 3 .
. . .) resource counter attribute | available resource objects
isResAvailable Resis available and . . .
return true or false hasavaluethat isgreater |in the resource pool is
than O greater than 0
select (and return) a
resource object from the
. set of available resource
allocate aresource object | decrement resource . .
allocateRes . objects in the resource
of type Res counter attribute .)
pool (using an allocation
policy) and designateit as
BUSY
take aresource object
el Res de-allocate aresource increment resource of type Res as argument
object of type Res counter attribute and designate it as
AVAILABLE

Chapter 3. Resource-Constrained Activities

26

Information and Process Modeling for Simulation
— Part II: Activities and Processing Networks

In both approaches, it is natural to add these operations to the object type representing the process owner of the
activities concerned, as in the models shown in Figure 3-12 and Figure 3-14.

In the first approach, for each resource object type in the conceptual model, a resource counter attribute is added
to the object type representing the process owner and the conceptual model's resource object types are dropped.

In the second approach, the conceptual model's resource object types are elaborated by adding an enumeration
attribute status holding a resource status value such as AVAILABLE or BUSY . For each resource object type,
a collection-valued property (such as rooms or doctors) representing a resource pool is added to the object type
representing the process owner.

A simple modéel with resource counters

Using the conceptual information model shown in Figure 3-4 as a starting point, we first rename all classes and
properties according to OO naming conventions and replace each of the two (conceptual) operations allocate
aroomand allocate a doctor with atriple of isAvailable/allocate/rel ease operations for the two resource

object classes Room and Doctor in the Medical Department class, where we also add the counter attributes
nmrOfRooms and nmrOfDoctors. Then, the two resource object classes Room and Doctor are dropped. The
result of this elaboration is the information design model shownin Figure 3-12.

Figure 3-12. An information model for the simplified design
with the resource counters nmr OfRooms and nmr OfDoctors.

«event type» <<activit.y type»
PatientArrival Examination

«rv» duration() : Decimal {U(5,10)}

«rv» recurrence() : Decimal { Exp(1/5)}

* The allocate/rel ease oper- *
* ations de-/increment the 1
corresponding counters.

planned \ \ «object type»
Examinations \ M edicalDepar tment
nmrOfRooms : Integer

* 0.1 |nmrOfDoctors: Integer

{ ordered} isRoomAvailable() : Boolean
allocateRoom()
releaseRoom()
isDoctorAvailable() : Boolear
1 allocateDoctor()
releaseDoctor()

«object type»
Patient

Using the conceptual process model shown in Figure 3-5 as a starting point and based on the type definitions of
the information design model of Figure 3-12, we get the following process design.

Chapter 3. Resource-Constrained Activities 27

Information and Process Modeling for Simulation
— Part II: Activities and Processing Networks

Figure 3-13. A process design model based on the information design model of Figure 3-12.

md: Medicallepartment
[md = pa.medical Department]
resAllocated: Boolean

IF md.isRoomAvai lable() AMD
md .izDoctorfvailable|)
THEN
md allocateRoom()
md .allocateloctor()
resAllocated =true
ELSE
md waitingPatients. push| pa.patient)

md: Medicallepartment

[md = ex. medical De partment]

p: Patient
anctherPatientFetched: Boolean

IF md waitingPatients. length =0
THEN
md.releaseRoom()
md.releaselroctor()
ELSE [/ fetch next patient
p := md.waitingPatient= pop()
anotherPatientFetched :=true

5z

ex: Examination

C)c [resAliocated]

pa:PatientArrival '[PEItiEl'It= p

[anctherPatientFetched |

This process model defines the following two event rules.

ON pa: PatientArrival

md : Medical Department
resAllocated : Boolean
md := pa.medical Department

IF md.isRoomAvailable() AND md.isDoctorAvailable()
THEN md.allocateRoom(); md.allocateDoctor(); resAllocated := true
EL SE md.waitingPatients.push(pa.patient); resAllocated := false

IF resAllocated SCHEDUL E Examination(patient:=pa.patient, medical Department:=md)

ON ex: Examination

md : Medical Department
anotherPatientFetched : Boolean
p: Patient

md ;= ex.medical Department

IF md.waitingPatients.length = 0
THEN md.releaseRoom(); md.rel easeDoctor(); anotherPatientFetched := false
EL SE p := md.waitingPatients.pop(); anotherPatientFetched := true

I F anotherPatientFetched SCHEDUL E Examination(patient:=p, medical Department:=md)

Notice that the event scheduling arrows of Figure 3-13, and also the SCHEDUL E statements of the
corresponding event rule tables, do not contain assignments of the duration of activities, sinceit is assumed
that, by default, whenever an activity type has an operation duration(), the duration of activities of thistype are
assigned by invoking this operation.

A general model with resour ce objects as member s of resour ce pools

In amore general approach, instead of using resource counter attributes, explicitly modeling resource object
classes (like Room and Doctor) allows representing resource roles (stereotyped with «res») and resource pools

Chapter 3. Resource-Constrained Activities 28

Information and Process Modeling for Simulation
— Part II: Activities and Processing Networks

(stereotyped with «pool») in the form of collections (like md.rooms and md.doctors) and modeling various
forms of non-availability of resources (such as machines being defective or humans not being in the shift plan)
with the help of corresponding resource status values (such as OUT_OF ORDER). The result of this elaboration
is the information design model shown in Figure 3-14.

Figure 3-14. An OEM-A class model with resource object types for modeling resource roles and pools.

«pool» %
«enumeration»

Resour ceStatusEl «object type» «object type» «pool»

AVAILABLE Doctor Room —

BUSY B -

OUT OF ORDER status : ResourceStatusEL status : ResourceStatusEL *

1 «res» 1 «res»
«event type»
PatientArrival
* «activity type» *

Examination

«rv» recurrence() : Decimal { Exp(1/5)}

«rv» duration() : Decimal {U(5,10)

*

1 processOwner

1 1
planned «object type» *
«object type» Examinations M edical Department
Patient
* 0.1 lisRoomAvailable() : Boolean
{ordered} allocateRoom() : Room

releaseRoom(in r : Room)
isDoctorAvailable() : Bool
allocateDoctor() : Doctor *
releaseDoctor(in d : Doctor)

processOwner 1

For an OEM-A class model, like the one shown in Figur e 3-14, the following compl eteness constraint must
hold: when an object type O (like Doctor) participates in a «res» association (aresource role association) with
an activity type A (like Examination), the process owner object type of A (Medical Department) must have a

«pool» association with O.

Chapter 3. Resource-Constrained Activities

29

Information and Process Modeling for Simulation
— Part II: Activities and Processing Networks

Figure 3-15. A process design model based on the information design model of Figure 3-14.

md: Medicallepartment

[md = pa.medical Department]
resAllocated: Boolean

r: Room; d: Doctor

md: Medicallepartment

[md = ex.medical Department]
anotherPatientFetched: Boolean
p: Patient

IF md. iz RoomAvailable() AND
md .isCoctorAvailable()
THEN
r :=md.allecateRoom()
d := md.allocateDoctor)
resAllocated =true
ELSE
md waitingPatients. push(pa.patient)

Oo [resAllpcated]

IF md waitingPatients. length =0
THEN
md. releaseRoom| ex.room)
md. releaseDoctor| ex.doctor)
ELSE [/ fetch next patient
p := md.waitingPatients pop()
anotherPatientFetched = true

T

[anctherPatientFetched |

ex: Examination

pa:PatientArrival
| reom=r room= &xX.rogm
doctor=d) doctor = ex.doctor
patient= p

Extending OEM Class Diagrams by adding a «resour ce type» category

Theinformation design model of Figure 3-14 contains two object types, Room and Doctor, which are the range
of resource role and resource pool properties (association ends stereotyped «res» and «pool»). Such object types
can be categorized as «resource type» with the implied meaning that they inherit a resource status attribute from
apre-defined class Resour ce, asshownin Figure 3-17.

Figure 3-16. Any resource type R extends the pre-defined object type Resour ce

Object
id : Integer
name: String
Resource «enumeration»
status : ResourceStatusEL Resour ceStatustl
AVAILABLE

isAvailable() : Boolean BUSY

alocate() : Resource OUT OF ORDER
release() —

«resource type»
R

The introduction of resource typesto OEM class models allows simplifying models by dropping the following
modeling items from OEM-A class models, making them part of the implicit semantics:

1. the status attributes of object types representing resource types, which are implicitly inherited;
2. the pre-defined enumeration ResourceStatuskEL ;

3. the resource management operations isAvailable, allocate and release, which are implicitly inherited by
any resource type; and

Chapter 3. Resource-Constrained Activities 30

Information and Process Modeling for Simulation
— Part II: Activities and Processing Networks

4. the planned activity queues may possibly be implicitly represented for any resource-constrained activity
type in the form of ordered multi-valued reference properties of its process owner object type.

Thisisshownin Figure 3-17.

Figure 3-17. A simplified version of the model of Figure 3-14

«pool» *
«pool»
«resource type» «resourcetype» |
Doctor Room
*
«event type» 1 «res» 1 «res»
PatientArrival
x «activity type» *

Examination

«rv» recurrence() : Decimal { Exp(1/5)}

«rv» duration() : Decimal {U(5,10),

* *

*

1 1 planned 1 processOwner
Examinations *
«object type» {ordered} «object type»
Patient M edical Department]
* 0.1
processOwner 1 *

Revisiting the manufacturing wor kstation example

A manufacturing workstation, or a"server" in the terminology of Operation Research, represents a resource
for the processing activities performed at/by it. This was left implicit in the OEM-A class model shown on the
right-hand side of Figure 2-3. Using the new modeling elements (resource types, resource roles and resource
pools), the processing activities of aworkstation can be explicitly modeled as resource-constrained activities,
leading to the OEM-A class model shown in Figur e 3-18 and to a more high-level and more readable process
model compared to the process model of Figure 2-4.

Chapter 3. Resource-Constrained Activities

Information and Process Modeling for Simulation
— Part II: Activities and Processing Networks

Figure 3-18. An OEM class diagram modeling a single
workstation system with resour ce-constrained processing activities

*

«object type» { ordered} 0.1 «pool»
Part «resource type»
: p— _ WorkStation
arrivalTime : Decimal| | tingparts 1
o1 1 1 «res»
«exogenous event type» *
PartArrival

«rv» recurrence() : Decimal {Tri(3,4,8)}

* «activity type» *
Processing

*

proo ner 1 «rv» duration() : Decimal { Exp(1/6)

«object type»
ProductionPlant

Decoupling the allocation of multiple resour ces

In asimplified simulation design for the extended scenario (with patients and nurses first walking to
examination rooms before doctors are allocated for starting the examinations) described by the conceptual
models of Figure 3-7 and Figure 3-10, we do not consider the walks of doctors, but only the walks of nurses
and patients. For simplicity, we drop the superclass people and associate the activity type WalkToRoom with the
Patient and Nurse classes. The result of this elaboration is the information design model shown in Figure 3-19.

Chapter 3. Resource-Constrained Activities 32

Information and Process Modeling for Simulation
— Part II: Activities and Processing Networks

Figure 3-19. An information design model for decoupling the allocation of rooms and doctors.

«pool»
«resource type»
Doctor
*
1 «res»
performer «res» «pool»
«resource type»
Room
1 *
«event type»
PatientArrival 1 «res»
* «activity type» *
«rv» recurrence() : Decimal { Exp(1/5)} Examination
. * « |«rv» duration() : Decimal {U(5,10)
1 1
*
object type
¢ IJDatiel):? ’ 1 processOwner
*
1 processOwner «object type»
M edical Department]
*
* 1
processOwner 1 *
* «activity type»
WalkToRoom
*
«rv» duration() : Decimal {U(1,2)
1 «pool»
* «object type»
Nurse
«res» *
performer

Figure 3-20. A process design model based on the information design model of Figure 3-19.

md: Medicallepartment

[md = w.medical Department]
docAllocated: Boolean
nurseReal located: Boolean

md: Medicallepartment
[md = ex.medical Department]
docReallocated: Boolean;

roomReallocated: Boolean;

md: Medicallepartment

[md = pa. medical Department]
roomA lliccated: Boolean

r: Room; n: Nurse

IF md.isRoomévailable]) AND
md .isNursefvailable()
THEM r:=md.allocateRoom()
n := md.allocateMurss()
roomAllccated =true
ELSE md.planned alksToRoom. push(
pa.patient)

pa:PatientArrival

room :=r
nurse =n

[roomAlloccated)

d: Doctor, n: Nurse

IF md.plannedWalksToRoom.length> O
AMD md.isRoom&vailable()

THEN nurseReallocated == true
p := md.planned¥ alksToRoom. popl)
r:= md.al lecateRoom()

ELSE md.releaseMursd w.nurse)

IF md.isDoctorAvailable()

THEN d := md .allocatelroctor()
docAllocated = true

ELSE md.plannedExaminations.push(

[w.patient, w.roocm])

p: Patient; n: Murse; pair: OrderedPair

IF md plannedWalksToRoom length = 0
AND md.isMursefyvailable()
THENM roomReallocated = true
p ;= md.plannedWalksToRoom. pop()
n := md.allocateN urse()
ELSE md.releaseRoom| ex.room)
IF md.plannedExaminations.length = 0
THEN docReallocated :=true
pair ;= md.plannedExaminations.pop()
ELSE md.releaseDoctor| ex.doctor)

T
w: WalkToRoom

[decAllocated)

-
[nurseReallocated)

patient:= p
rogm :=r

[docReallocated]

ex: Examination

[room patient:= pair[0]

Reallocated | room ;= pair[1]

patient :=p
nurse := n

Chapter 3. Resource-Constrained Activities 33

Information and Process Modeling for Simulation
— Part II: Activities and Processing Networks

This process design model defines three event rules. Notice that the Examination event rule either re-all ocates
the doctor to the next planned examination and schedulesiit, if thereis one, or it releases the doctor and re-
allocates the room to the next planned walk-to-room and schedulesit, if thereis one.

Centralizing there-allocation of resources

As shown before, in the conceptual process models of Figur e 3-9 and Figure 3-10, the re-allocation of

resources can be centralized with the help of resource release request events and the process owner and the
involved performers can be displayed by using a Pool that is partitioned into Lanes for the involved activity
performers, resulting in the model shown in Figure 3-21.

Figure 3-21. Representing the process owner as a Pool and
activity performers as Lanesin a process design model.

md: MedicalDepartment

[md = pa.medical bepartment]
roomAllocated: Boolean

r. Room; n: Nurse

IF md.isRoomAvailable() AND md. isNursedwvailable()

THEN r := md.allocateRoom(); n ;= md.allocateMurse()
roomé llecated = true

ELSE md.plannedy alksToRoom. push| pa patient)

md: Medicallepartment
[md =w.medical Department]
docAllocated: Boolean; d: Doctor

IF md. iz Doctorvailablel)
THEN d := md.allocateloctor); docAllocated = true

ELSE md.plannedExaminations. push| [w. patient, w.room])

A

e
2 reomAlocated [docAllocated] E‘“}r =d
we WalkToRoom md: MedicalDepartment
[md= nm.mediclDepartment]
pa:PatientArrival =r nurseReallocated: Boolean
nurse :=n r: Room; p:Patient
room:=r 1 IF md.plannedWalksToRoom lensth = O AND md. isRoomAvailable()
patent:=p Reallocated] nm Mures THEM r := md.allocateRoom(); nurseReallocated =true
’ Hélease p == md.planned alksToRoom. pop()
Request ELSE md.releaseMurse| w.nurse)
nurse=n ¥ patient := pair[d]
gtient:= .
PERETEEE N room = pair[1]
e Examination
md: MedicalDepartment Rl e md: MEd'H:aID?partment .
[md = rir.medicalDepartment] [roemResllocated | (docResliocstag) | [M9=8 medicalDepartmen]
p: Patient; n:Murse . docReallocated: Boolean;
g roomReallocated: Boolean pair: OrderedPair
E: 4

IF md. plannedW alksToRoom.length =0
AND md.isNursefvailable()

THEM roomResllocated:= true
p := md.planned¥ alksToRoom. pop()
n := md.allocateNurss()

ELSE md.releaseRoom| rr.room)

Request

rir: RoomRBelease

drmr: DoctorReleaseRequest

IF md. plannedExaminations.length = 0
THEM docResllocated = true

pair := md.plannedExaminations. pop()
ELSE md.releaseloctor| dr.doctor)

Chapter 3. Resource-Constrained Activities

34

Information and Process Modeling for Simulation
— Part II: Activities and Processing Networks

3.3. The Allocate-Release M odeling Pattern

The conceptual process model shown in Figure 3-10 and the process design model shown in Figure 3-21
exhibit agenera pattern for modeling a sequence of two resource-constrained activities of types A1 and Ay
shown in Figur e 3-22. For describing this pattern, we assume that

1. the process owner maintains queues for planned activities: g, for for planned activities of type A1, and
go for planned activities of type Ao, both defined as queue-valued (i.e., ordered multi-valued) reference
properties of the process owner in the underlying information model;

2. the underlying information model specifies the sets of resources Ry and Ry required by A1 and Ay,
3. the set of resources required by A> but not by A1 is denoted by Ry#Ry;

4. the set of resources required by A; and by A is denoted by Ri#Ro.

Figure 3-22. A conceptual modeling pattern for a sequence of resource-constrained activities

process owner
IF R1 available
THEN allocate R1
ELSE add planned Al to q1

)

start event

process owner
IF R2-R1 available
THEN allocate R2-R1
ELSE add planned A2 with R1nR2 to g2

5 D R2-R1 requests
v (—Vﬁ allocated
R1 allocated a ot activities of type 7\ R1nR2 re-allocated
L - uz \i4~\

/ R1-R2 ‘.
LOQ release R2-R1 re-allocated S
R1-R2 requests *e

a R2

S release

re-allocated
h

% K\

process owner
IF g1 not empty AND R1nR2 available
THEN allocate R1nR2 AND re-allocate R1-R2 to head(q1)
ELSE release R1-R2

process owner
IF g1 not empty AND R1-R2 available
THEN allocate R1-R2 and re-allocate R1nR2 to head(q1)
ELSE release R1nR2
IF g2 not em

pty
THEN re-allocate R2-R1 to head(g2)
ELSE release R2-R1

We can describe the algorithm of the Allocate-Rel ease Modeling Pattern for the case of a sequence of two
resource-constrained activities in the following way:

1. ON start event:

a. If theresources Ry required by A1 are available, they are alocated; otherwise, a planned Aq
activity is added to the queue qs.

b. If the resources Ry have been allocated, a new activity of type A1 is started.

Chapter 3. Resource-Constrained Activities 35

Information and Process Modeling for Simulation
— Part II: Activities and Processing Networks

2. WHEN an activity of type A; completes:

a. The resources Ry#R; are allocated, if they are available; otherwise, a planned A, activity with
reserved resources Ri#Ry is added to gp.

b. If Ro#R, have been allocated, a new activity of type Ay is started. In addition, an immediate
release request for Ry#Ry is caused/schedul ed.

3. ON release request for Ri#Ry:

a. If g isnot empty and the resources R1#Ry required by both A1 and A, are available, they are
allocated and R1#R» are re-allocated to head(q1); otherwise, Ri#R, are released.

b. If the resources R1#R> have been re-allocated, a new activity of type A1 is started.
4. WHEN an activity of type Ap completes:

a Thereisno state change.

b. Animmediate release request for Ry is caused/schedul ed.

5. ON release request for Ry:

a. If Ri#Ry isnonempty: if g isnot empty and the resources Ri#Ry required by A1, but not yet
allocated, are available, they are allocated and Ri#R» are re-allocated to head(q;); otherwise,

R1#Ry are released. If gp is not empty, then re-allocate Ry#R; to head(gp); otherwise, Ry#R; are

released.

b. If Ri#Ry, have been re-allocated, anew activity of type A; is started. If Ro#R; have been re-
allocated, a new activity of type Ay is started.

New modeling elementsfor expressing the Allocate-Release M odeling Pattern

The most important new DPMN modeling element introduced are resour ce-dependent causation (resp.,
activity start) arrows pointing to resource-constrained activities, asin Figur e 3-23. These arrows are high-level
modeling elements representing the implicit allocate-release logic exhibited in Figur e 3-22. Thus, the meaning
of the model of Figure 3-23 is provided by the model of Figure 3-22.

Figure 3-23. Using resource-dependent activity start arrows in a conceptual process model.

‘

start event

Since the Allocate-Rel ease Modeling Pattern defines a generic algorithm for allocating and releasing resources,
its (pseudo-)code does not have to be included in aDPMN Process Diagram, but can be delegated to an OE
simulator supporting the resource-dependent scheduling of resource-constrained activities according to this
pattern. This approach alows introducing new DPMN modeling elements for expressing the Allocate-Release
Modeling Pattern in a concise way, €either leaving allocate-rel ease steps completely implicit, asin the DPMN
Process Diagram of Figure 3-23, or explicitly expressing them, asin Figure 3-24.

Chapter 3. Resource-Constrained Activities

36

Information and Process Modeling for Simulation
— Part II: Activities and Processing Networks

It isan option to display the implicit all ocate-rel ease steps with Allocate and Rel ease rectangles together with
simple control flow arrows, as between the start event circle and the Allocate R1 rectangle in Figure 3-24.

Figure 3-24. Displaying the implicit allocate-rel ease steps.

Allocate Al Release Allocate A2 Release
R1 R1-R2 R2-R1 R2

start event

The meaning of the model of Figure 3-24 isthe same as that of Figure 3-23, which is provided by the model of
Figure 3-22. Thefact that, using resource-dependent activity start arrows, the allocate-release logic of resource-
constrained activities does not have to be explicitly modeled and displayed in an OEM process model shows the
power of founding a process model on an information model, since the entire resource management logic can

be expressed in terms of resource roles, constraints and poolsin an OEM information model. Thisisin contrast
to the common approach of industrial simulation tools, such as Simio and AnyLogic, which require defining
resource roles, constraints and pools as well as explicit allocate-rel ease steps in the process model, in asimilar
way as shown in Figure 3-24.

Using resource-dependent scheduling arrows in a process model implies using their standard allocate-release
logic according to which required resources that have not been allocated before are allocated immediately before
an activity requiring them is started and released immediately after this activity is completed if they are not
required by the next activity. Whenever another (non-standard) resource allocation logic is needed, it hasto be
expressed explicitly using ordinary event scheduling arrows.

Simplifying the workstation process model
We can now simplify the workstation model using the resource type category for WorkStation in the OEM
class model and a resource-dependent activity start arrow from the arrival event to the processing activity in the

DPMN process model. The resulting class model is shownin Figure 3-27.

Figure 3-25. Modeling WorkStation as a resour ce type

*

«object type» {ordered} 0.1 «pool»
Part «resource type»
- — - WorkStation
arrivalTime : Decimal waitingParts 1
1
01 1 «res»
«€exogenous event type» *
PartArrival
* [«rv» recurrence() : Decimal {Tri(3,4,8)
* «activity type» *
Processing
* N -
durati : D al { Exp(1/6,
proc ner 1 «rv» duration() : Decimal { Exp(1/6)
«object type»

ProductionPlanf

The simplification of the process model of Figure 2-5 results in the model of Figure 3-26.

Chapter 3. Resource-Constrained Activities 37

Information and Process Modeling for Simulation
— Part II: Activities and Processing Networks

Figure 3-26. A simplified version of the workstation process
model using a resource-dependent activity start arrow.

p: Processing

aPartArrival
Simplifying the medical department process model

We can now simplify the medical department model using the resource type category for Doctor, Room and
Nurse in the OEM class model and resource-dependent activity start arrowsin the DPMN process model. The
resulting class model is shown in Figure 3-27.

Figure 3-27. A simplified version of the medical department
information model with Doctor and Room as resour ce types

«pool»
«resource type»
Doctor
*
1 «res»
performer «res» «pool»
«resource type»
Room
1 *
«event type»
PatientArrival 1 «res»
x «activity type» *
«rv» recurrence() : Decimal { Exp(1/5)} Examination
. * + |«rv» duration() : Decimal {U(5,10)
1 1
*
«object type»
Patient 1 processOwner
*
1 processOwner «object type»
M edical Department
*
* 1
processOwner 1 *
* «activity type»
WalkToRoom
*
«rv» duration() : Decimal {U(1,2)
1 «pool»
* «object type»
Nurse
«res» *
performer

The simplification of the rather complex process model of Figure 3-21 by using resource-dependent activity
start arrows resultsin the model of Figure 3-28.

Chapter 3. Resource-Constrained Activities 38

Information and Process Modeling for Simulation
— Part II: Activities and Processing Networks

Figure 3-28. A simplified version of the medical department
process model using resour ce-dependent scheduling arrows.

medical Department

% H (w: WalkToRoom
2 L

paPatientArrival
o)
o} ex: Examination
ke

Chapter 3. Resource-Constrained Activities

39

Information and Process Modeling for Simulation
— Part II: Activities and Processing Networks

Chapter 4. Processing Activities and Processing Networ ks

A Processing Activity is a resource-constrained activity that takes one or more objects as inputs and processes
them in some way (possibly transforming them), resulting in one or more output objects. The processed objects
have been called "transactions" in GPSS and "entities" in SIMAN/Arena, while they are called Processing
Objectsin DPMN.

Ontologically, there are one or more objects participating in an activity, as shown in Figure 4-1. Some of them
represent resources, while others represent processing objects. For instance, in the information and process
models of a medical department shown in Figure 3-7 and Figur e 3-10, there are two processing activity types:
walks to room and examinations. In walks to room, since nurses are walking patients to examination rooms,
nurses and rooms are resources, while patients are processing objects. In examinations, doctors and rooms are
resources, while patients are processing objects. If patients would walk to an examination room by themselves
(without the help of anurse), patients would be the performers of walks to aroom, and not processing objects,
and, consequently, walks to aroom would not be processing activities.

Figure 4-1. Resource-constrained activities involving processing objects are processing activities.

*

. 0.1 process owner
processing

objects 1.*
bj ects

ol

entities
* *
x
r esour ce- procesing
activities constrained <]— activities
activities

/

«invariant»
{A performer
isaresource}

Processing activities typically require immobile physical resources, like rooms or workstation machines,
which define the inner nodes of a Processing Network (PN). A Processing Object enters such a network viaan
Arrival event at an Entry Node, is subsequently routed along a chain of Processing Nodes where it is subject to
Processing Activities, and finally exits the network viaa Departure event at an Exit Node.

Summary

1. A Processing Object enters a Processing Network (PN) viaan Arrival event at an Entry
Node, is subsequently routed along a chain of Processing Nodes where it is subject to
Processing Activities, and finally exits the network via a Departure event at an Exit Node.

2. PNs have been investigated in operations management and the mathematical theory of
queuing (Loch 1998, Williams 2016) and have been the application focus of most industrial
simulation software products, historically starting with GPSS (Gordon 1961) and SIMAN/
Arena (Pegden and Davis 1992).

3. OEM-PN alows modeling many forms of discrete processing processes.

Chapter 4. Processing Activities and Processing Networks 40

Information and Process Modeling for Simulation
— Part II: Activities and Processing Networks

4. PN models are spatial simulation models where node objects, and other resource objects, are
located in space and processing objects move (or flow) in space.

5. Each node definition in a PN model defines both a spatial node object and an event type.

6. An Object Flow Arrow connecting two nodes of a PN model represents both an event flow
and an object flow. While events flow in time, processing objects flow in space (and time).

The nodes of a PN define locations in a network space, which may be based on atwo- or three-dimensional
Euclidean space. Consequently, OEM-PN models are spatial simulation models, while basic OEM and OEM-
A allow to abstract away from space. When processing objects are routed to a follow-up processing activity,
they move to the location of the next processing node. The underlying space model allows visualizing a PN
simulation in a natural way with processing objects as moving objects.

Each node in a PN model represents both an object and an event type. An Entry Node represents both an

entry point (e.g., areception area or an entrance to an inventory) and an arrival event type. A Processing Node
represents both a resource object (e.g., aworkstation or aroom) and a processing activity type. An Exit Node
represents both an exit point and a departure event type. A flow arrow connecting two Processing Nodes
represents both an event flow and an object flow. Thus, the node types and the flow arrows of a PN are high-
level modeling concepts that are overloaded with two meanings.

A PN modeling language should have elements for modeling each of the three types of nodes. Consequently,
DPMN-A has to be extended by adding new visual modeling elements for entry, processing and exit nodes, and
for connecting them.

Inthefield of DES, PNs have often been characterized by the narrative of “entities flowing through a system”.
In fact, whilein basic DPMN and in DPMN-A, thereis only aflow of events, in DPMN-PN this flow of events
isover-laid with aflow of (processing) objects.

PNs have been investigated in operations management and the mathematical theory of queuing (Loch 1998,
Williams 2016) and have been the application focus of most industrial simulation software products, historically
starting with GPSS (Gordon 1961) and SIMAN/Arena (Pegden and Davis 1992). They allow modeling many
forms of discrete processing processes as can be found, for instance, in the manufacturing industry and the
services industry.

It is remarkable that the PN paradigm has dominated the discrete event simulation market since the 1990’ s and
still flourishes today, mainly in the manufacturing and services industries, often with object-oriented and “agent-
based” extensions. Its dominance has led many simulation experts to view it as a synonym of DES, whichisa
conceptual flaw because the concept of DES, even if not precisely defined, is clearly more general than the PN
paradigm.

The PN paradigm has often been called a“process-oriented” DES approach. But unlike the business process
modeling language BPMN, it is not concerned with a general concept of business process models, but rather
with the specia class of processing process models for discrete processing systems. A processing process
includes the simultaneous handling of several “cases’ (processing objects) that may compete for resources or
have other interdependencies, while a“business process’ in Business Process Management has traditionally
been considered as a case-based process that is isolated from other cases.

For PN models, asimulator can automatically collect the following statistics, in addition to the resource-
constrained activities statistics described in 3. Resource-Constrained Activities:

Chapter 4. Processing Activities and Processing Networks 41

Information and Process Modeling for Simulation
— Part II: Activities and Processing Networks

1. The number of processing objects that arrived at, and departed from, the system.
2. The number of processing objects in process (that is, either waiting in a queue/buffer or being processed)

3. The average time a processing object spendsin the system (also called throughput time).

During asimulation run, it must hold that the number of processing objectsthat arrived at the system is equal to
the sum of the number of processing objects in process and the number of processing objects that departed from
the system, symbolically:

arrived = in-process + departed

4.1. Conceptual Modeling of Processing Networ ks

For accommodating PN modeling, OEM-A is extended by adding pre-defined types for processing objects,
entry node objects, arrival events, processing node objects, processing activities, exit objects and departure
events, resulting in OEM-PN. These "built-in" types, which are described in Figure 4-2, allow making PN
models based on them simply by making a process model (with DPMN) without the need of making an
information/class model as its foundation, as shown in Figure 4-3.

Figure 4-2. A conceptual OEM class model defining built-in types for conceptual PN modeling

«object type» «object type» «object type»
EntryNode ProcessingNode| ExitNode

1 1 1

* * *
«event type» «activity type» «event type»
Arrival ProcessingActivity Departure

* * *
1
0.1
«object type»

ProcessingObj ect

1

An example of a conceptual PN model: Department of Motor Vehicles

As asimple example of aPN simulation model we consider a Department of Motor Vehicles (DMV) with two
consecutive service desks: areception desk and a case handling desk. When a customer arrives at the DMV,
shefirst hasto queue up at the reception desk where data for her case is recorded. The customer then goes to
the waiting area and waits for being called by the case handling desk where her case will be processed. After
completing the case handling, the customer leaves the DMV viathe exit.

Customer arrivals are modeled with an «entry node» element (with name “DMV entry”), the two consecutive
service desks are modeled with two «processing node» elements, and the departure of customersis modeled
with an «exit node» element (with name “DMYV exit”).

DPMN is extended by adding the new modeling elements of PN Node rectangles, representing node objects,
and PN Object Flow arrows, representing combined object-event flows. PN Node rectangles take the form of

Chapter 4. Processing Activities and Processing Networks 42

Information and Process Modeling for Simulation
— Part II: Activities and Processing Networks

stereotyped UML object rectangles, while PN Object Flow arrows have a special arrow head consisting of a
circle and three bars, as shown in Figure 4-3.

Figure4-3. APN model using the new DPMN modeling elements of PN Node rectangles and PN Flow arrows

«entry node» ——HHJ «processing node» —H+J «processing node» ——¢ «exit node»
dmvEntry receptionDesk caseHandlingDesk dmvExit

Using both Object Flow arrows and Event Scheduling arrows

While an Object Flow arrow between two nodes implies both aflow of the processing object to the successor
node and the resource-dependent scheduling of the next processing activity, an Event Scheduling arrow from
aprocessing node to an Event circle represents an event flow where a processing activity end event causes/
schedules another event, asillustrated in the example of Figure 4-4.

Figure 4-4. ADPMN-PN process diagram with an Event Scheduling arrow

«entry node» ———HHJ «processing node» ——H «processing node» ——¢ «exit node»

dmvEntry receptionDesk caseHandlingDesk dmvExit
false documents
call police

4.2. Processing Network Design M odels

For accommodating PN modeling, OEM-A is extended by adding pre-defined types for processing objects,
entry node objects, arrival events, processing node objects, processing activities, exit objects and departure
events, resulting in OEM-PN. These "built-in" types, as described in Figure 4-5, allow making PN models
based on them simply by making a process model with DPMN without the need of making an OEM class model
asitsfoundation, as shown in Figure 4-6.

Chapter 4. Processing Activities and Processing Networks 43

Information and Process Modeling for Simulation
— Part II: Activities and Processing Networks

Figure 4-5. An OEM class design model defining built-in types for making PN design models

«object type» «object type»
EntryNode ExitNode
arrivalRecurrence : Function to Number
successorNodes : Function to ProcessingNode[1..*] 1
1 «object type»
ProcessingNode

duration : Function to Number
successorNodes : Function to ProcessingNode|ExitNode[1..*]

* 1 *
*
«event type» «activity type» «event type»
Arrival ProcessingActivit Departure
* * *
0.1 «object type»

ProcessingObj ect
arrival Time : Number 1

Notice that the range of the properties arrival Recurrence, successorNodes and duration of the built-in object
types EntryNode and ProcessingNode is Funct i on, which means that the value of such a property for a
specific node is a specific function. While the standard UML semantics does not support such an extension

of the semantics of propertiesin the spirit of the Functional Programming paradigm, itsimplementation in a
functional OO programming language like JavaScript, where objects can have instance-level functions/methods,
is straightforward.

The property successorNodes allows to express afunction that provides, for any given entry or processing node,
a(possibly singleton) set of processing nodes or exit nodes. Such a function can express several cases of routing
a processing object from a node to one or more successor nodes:

1. afixed unique successor node for modeling a series of processing nodes connected by (possibly
conditional) resource-dependent scheduling arrows, asin Figure 4-8;

2. aconditional unique successor node for modeling an Exclusive (XOR) Gateway |eading to one of
several possible successor nodes,

3. avariable subset of a set of potential successor nodes for modeling an Inclusive (OR) Gateway;

4. afixed set of successor nodes for modeling a Parallel (AND) Gateway;

InaDPMN diagram, the set of successor nodes of anode is defined by Flow Arrows, possibly in combination
with Gateways.

PN example 1: asingle workstation

Part arrivals are model ed with an «entry node» element (with name “partEntry”), the workstation is model ed
with a «processing node» element, and the departure of parts is modeled with an «exit node» element (with
name “ partExit”).

DPMN is extended by adding the new modeling elements of PN Node rectangles, representing node objects
with associated event types, and PN Flow arrows, representing combined object-event flows. PN Node

Chapter 4. Processing Activities and Processing Networks 44

Information and Process Modeling for Simulation
— Part II: Activities and Processing Networks

rectangles take the form of stereotyped UML object rectangles, while PN Flow arrows have a specia arrow
head, as shown in Figure 4-6.

Figure 4-6. A PN model of a workstation system using PN Node rectangles and PN Flow arrows

«entry node» L «processingnode» | £ it nodes
partEntry workStation partExit
arrivalRecurrence = tri(3,4,8) duration = exp(1/6)

PN example 2: a workstation may haveto rework parts

Parts that turn out to be defective after being processed need to be reworked. This can be modeled by adding an
attribute percentDefective to the object type Workstation and suitable logic to the Processing activity end event
rule such that in percentDefective % of all cases a processed part cannot depart the system (i.e., is not removed
from the input buffer), but is being reworked by another Processing activity.

Figure 4-7. APN model of a workstation system where parts may have to be reworked

defective: Boolean

IF U(1,100) <= percentDefective
THEN defective := true

/
/
«entry node» «proc Srt]gt _node» N <ot rodon
partEntry M artExit
arrival Recurrence = tri(3,4,8) duration = exp(1/6)
percentDefective =5

[defective]

PN example 3: Department of Motor Vehicles

A Department of Motor Vehicles (DMV) has two consecutive service desks: areception desk and a case
handling desk. When a customer arrives at the DMV, shefirst has to queue up at the reception desk where
datafor her caseisrecorded. The customer then goes to the waiting area and waits for being called by the case
handling desk where her case will be processed. After completing the case handling, the customer leaves the
DMV viathe exit.

Customer arrivals are modeled with an «entry node» element (with name “dmvEntry”), the two consecutive
service desks are modeled with two «processing node» elements, and the departure of customersis modeled
with an «exit node» element (with name “ dmvEXxit”).

Figure 4-8. A PN model using the new DPMN modeling elements of PN Node rectangles and PN Flow arrows

«entry node» TG «processing node» | 1o «processingnode» | £ it node»
dmvEntry receptionDesk caseHandlingDesk dmvExit
arrival Recurrence = exponential (1/4) duration = triangular(1,2,4) duration = uniform(1,2)

Chapter 4. Processing Activities and Processing Networks 45

Information and Process Modeling for Simulation
— Part II: Activities and Processing Networks

4.3. Proprietary terminologies and diagram languages

Even after a 50 years history of PN modeling and simulation thereis still no vendor-neutral language definition
for the PN paradigm, e.g., in the form of a meta-model, which could be used as a basis for comparing and
evaluating different PN modeling tools, and for interchanging models between them. The simulation modeling
concepts of the PN paradigm, which have been pioneered by GPSS and SIMAN/Arena, have been adopted by
many other simulation software products, including Simul8, Simio and AnyL ogic. However, each product based
on this paradigm uses its own variants of the PN concepts, together with their own proprietary terminology and
proprietary diagram language, asillustrated by Table 4-1.

Table 4-1. Comparison of different terminologies used for the same PN modeling concepts.

OEM Arena Simul8 Simio Anyl ogic
Processing Object | Entity Work Item Token Agent
Entry Node Create Start Point Source Source

. - Service or Seize
Processing Node Process QueuetActivity Server +Delay+Release
Exit Node Dispose End Point Sink Sink

Notice especially the strange term “Agent” used by AnyLogic, instead of the Arenaterm “Entity”, for
processing objects like manufacturing partsin production systems or patients in hospitals. It is confusing to call
amanufacturing part, such as awheel in the production of a car, an “agent”.

As noted by van der Aalst (2014), “the use of proprietary building blocks in tools such as ARENA makesit hard
to interchange simulation models’.

We illustrate the problem of different proprietary diagram languages by showing an Arena diagram in Figure
4-9 and an AnyLogic diagram in Figur e 4-10, both representing the DMV model of Figure 4-8.

Figure 4-9. An Arena diagram for the DMV model

\ "
DMV Entry S Reception Desk ‘» — Cﬂﬁ%‘;’::di":' } DMV Exit
i 0
0]

While an Arena"Process’ element, like Reception Desk in Figur e 4-9, when defined with an activity of type
Delay, does not require defining any explicit resources while assuming the Process element itself to be an
implicit resource, an AnyLogic "Service" element, like reception in Figure 4-10, requires first defining a
resource pool (with aresource type and a pool size), like receptionDesks, and then reference it in the definition
of the element.

Chapter 4. Processing Activities and Processing Networks 46

Information and Process Modeling for Simulation
— Part II: Activities and Processing Networks

Figure 4-10. An AnyLogic diagram for the DMV model (imposing Java naming syntax)

receptionDesks caseHandlingDesks

dmvEntry reception caseHandling gmvExit

o—Ed [7O g

Chapter 4. Processing Activities and Processing Networks

a7

Information and Process Modeling for Simulation
— Part II: Activities and Processing Networks

Chapter 5. Transfor mation Activities

A transformation activity is a processing activity that transforms one or more input objects of certain types into
one ore more output objects of different types.

To be completed ...

Chapter 5. Transformation Activities

48

Information and Process Modeling for Simulation
— Part II: Activities and Processing Networks

Acknowledgements

The author is grateful to Frederic (Rick) D. McKenzie (12020) for providing the opportunity to spend a
sabbatical at the Modeling, Smulation and Visualization Engineering Department of Old Dominion University
in Norfolk, Virginia, USA, in 2016. During that time, the grounds of the presented work have been laid.

This research has not been funded by the German research foundation Deutsche Forschungsgemeinschaft
(DFG).

Information and Process Modeling for Simulation
— Part II: Activities and Processing Networks

Bibliography

 van der Aalst, W.M.P. 2014. Business process simulation survival guide. In: J. vom Brocke and M.
Rosemann (eds), Handbook on business process management, vol 1, 2nd edn., Springer, pp 337-370.

* Arias, M., J. Munoz-Gama, and M. Sepulveda. 2018. Towards a Taxonomy of Human Resource Allocation
Criteria. In: Teniente E. and M. Weidlich (eds.), Business Process Management Workshops. BPM 2017.
Lecture Notes in Business | nformation Processing 308, 475483, Springer.

* Business Process Model and Notation (BPMN), Version 2.0, 2011. http://www.omg.org/spec/BPMN/2.0

 Drogoul, A., P. Fishwick, N. Gilbert, D. Pegden, G. Wagner, and L. Yilmaz. 2018. Panel Discussion: On
the Unity and Diversity of Computer Simulation. Journal of Smulation Engineering, volume 1, 2018.
Available from https:/articles.jsime.org/1/4/Unity-and-Diversity-of-Simulation

» Gordon, G. 1961. A general purpose systems simulation program. In AFIPS'61: Proceedings of the
Eastern Joint Computer Conference, Washington, D.C., 87-104, Association for Computing Machinery.

» Guizzardi, G. 2005. Ontological foundations for structural conceptual models. PhD thesis, University of
Twente, Enschede, The Netherlands. CTIT Ph.D. thesis series No. 05-74 ISBN 90-75176-81-3.

» Gurevich, Y. 1985. A New Thesis. Abstracts, American Mathematical Society, 6:4, p.317.

» Loch, C.H. 1998. Operations Management and Reengineering. European Management Journal, 16,
306-317.

* Pegden, C.D. and D.A. Davis. 1992. Arena: a SIMAN/Cinema-based hierarchical modeling system. In
Proceedings of the 24th Winter Smulation Conference (WSC '92). ACM, New York, NY, USA, 390-399.

* Schruben, L.W. 1983. Simulation Modeling with Event Graphs. Communications of the ACM 26, 957-963.

 Standridge, C.R. 2013. Beyond Lean: Smulation in Practice, Second Edition, Open Access book, available
from https://scholarworks.gvsu.edu/cgi/viewcontent.cgi ?arti cle=1006& context=books.

» Wagner, G. 2017a. An Abstract State Machine Semantics for Discrete Event Simulation. In Proceedings
of the 2017 Winter Smulation Conference. Piscataway, NJ: IEEE. Available from https://www.informs-
sim.org/wscl7papers/includes/files/056.pdf.

» Wagner, G. 2017b. Simdedu.com —Web-Based Simulation for Education. Proceedings of the 2017 Winter
Smulation Conference. Piscataway, NJ: |EEE.

» Wagner, G. 2018a. Discrete Event Process Modeling Notation (DPMN). Language Reference. Available
from https://dpmn.info/spec.

» Wagner, G. 2018b. Information and Process Modeling for Simulation — Part 1: Objects and Events. Journal
of Smulation Engineering 1, 1-25, 2018. Available from https:/articles.jsime.org/1/1.

» Williams, R.J. 2016. Stochastic Processing Networks. Annual Review of Statistics and Its Application 3:1,
323-345.

http://www.omg.org/spec/BPMN/2.0
https://articles.jsime.org/1/4/Unity-and-Diversity-of-Simulation
http://ie.technion.ac.il/serveng/Lectures/Loch.pdf
https://scholarworks.gvsu.edu/cgi/viewcontent.cgi?article=1006&context=books
https://www.informs-sim.org/wsc17papers/includes/files/056.pdf
https://www.informs-sim.org/wsc17papers/includes/files/056.pdf
https://dpmn.info/spec
https://articles.jsime.org/1/1

Information and Process Modeling for Simulation
— Part II: Activities and Processing Networks

Appendix A: OEM Elements

OEM extends UML Class Diagrams by adding the categories ("stereotypes") listed in the following table.

Name OEM language level UML stereotype Category of

object type basic OEM «object type» Class

event type basic OEM «event type» Class

exogenous event type basic OEM «exogenous event type» | Class

randqm variate sampling basic OEM «rv» Operation

function

activity type OEM-A «activity type» Class

resource role OEM-A «resource role» (in short, Association End
«res»)
«resource pool» (in short, -

resource pool OEM-A Association End
«pool»)

paraII.eI p §rt|0| pation OEM-A «parallel» Association End

(multiplicity)

resource type OEM-A «resource type» Class

entry node OEM-PN «entry node» Object

processing node OEM-PN «processing node» Object

exit node OEM-PN «exit node» Object

OEM/DPMN extends BPMN Process Diagrams by adding the modeling elements listed in the following table.

Name OEM/DPMN language level Visual notation

DPMN Data Objects with event ol: 0
. . . [0l = e.object]

rule variable declarations and state | basic DPMN
change statements If ol.propl > 1 THEN ol.prop2 :=2

i del
Delay annotations of Sequence basic DPMN +delay
Flow arrows
Event property assignment
annotations of Sequence Flow basic DPMN
arrows
Resource-Dependent Activity Start
arrows pointing to a Resource- DPMN-A
Constrained Activity
P@C ng Object Fi _OW arows DPMN-PN «processing node» ——HHJ «processing node»
pointing to a Processing Node Nodel Node2

I

Information and Process Modeling for Simulation
— Part II: Activities and Processing Networks

Index

	Table of Contents
	List of Figures
	List of Tables
	1. Introduction
	1.1. Object Event Modeling
	1.2. Ontological Considerations
	1.3. Object Event Simulation

	2. Simple Activities
	2.1. Conceptual Modeling of Simple Activities
	2.2. Design Modeling of Simple Activities

	3. Resource-Constrained Activities
	3.1. Conceptual Modeling of Resource-Constrained Activities
	3.2. Resource-Constrained Activities in Simulation Design Models
	3.3. The Allocate-Release Modeling Pattern

	4. Processing Activities and Processing Networks
	4.1. Conceptual Modeling of Processing Networks
	4.2. Processing Network Design Models
	4.3. Proprietary terminologies and diagram languages

	5. Transformation Activities
	Acknowledgements
	Bibliography
	Appendix A: OEM Elements
	Index

