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Abstract

This tutorial shows how to use UML Class Diagrams and Event-Graph-based DPMN Process Diagrams for
Object Event Modeling at all three levels of model-driven simulation engineering: for making conceptual
simulation models, for making platform-independent simulation design models, and for making platform-
specific, executable simulation models. UML Class Diagrams allow defining the types of objects, events
and activities, thus creating a foundation for DPMN Process Diagrams. The proposed modeling approach is
presented by showing how to model simple types of manufacturing systems: single workstations, workstations
in a series, and job shops.

This tutorial is also available in the following formats: PDF
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Chapter 1. Introduction

Due to their expressiveness and wide adoption as modeling standards, the Class Diagrams of the Unified
Modeling Language (UML) and the Process Diagrams of the Business Process Modeling Notation (BPMN)
are the most appropriate choices as information and process modeling languages for a model-based simulation
engineering approach. However, since they have not been designed for this purpose, we may have to restrict,
modify and extend them in a suitable way.

The Event Graph (EG) diagrams of Schruben (1983) allow defining computationally complete process design
models for event-based simulation, which can be viewed as the most fundamental Discrete Event Simulation
(DES) paradigm. In these diagrams, circles represent event types, and arrows between two event type circles A
and B represent event scheduling with a future events list in the sense that an occurrence of an event of type A
in a simulation run causes the simulator to schedule a future event of type B. Wagner (2018a+b) has extended
Event Graphs by adding elements from BPMN, resulting in the Discrete Event Process Modeling Notation
(DPMN).

Wagner (2018b) has proposed Object Event Modeling and Simulation (OEM&S) as a new model-based
paradigm for DES combining Object-Oriented (OO) Modeling with the event scheduling paradigm of Event
Graphs. In the OEM paradigm, the relevant object types and event types are described in an information model,
which is the basis for making a process model. A modeling approach that follows the OEM paradigm is called
an OEM approach. Such an approach needs to choose, or define, an information modeling language and a
process modeling language.

We propose an OEM approach based on UML Class Diagrams for conceptual information modeling and
information design modeling, as well as BPMN Process Diagrams for conceptual process modeling and DPMN
Process Diagrams for process design modeling. In the proposed approach, object types and event types are
modeled as special categories of classes in a UML Class Diagram. Random variables are modeled as a special
category of class-level operations constrained to comply with a specific probability distribution such that they
can be implemented as static methods of a class. Queues are not modeled as objects, but rather as ordered
association ends, which can be implemented as collection-valued reference properties. Finally, event rules,
which include event routines, are modeled both as BPMN/DPMN process diagrams and in pseudo-code such
that they can be implemented in the form of special onEvent methods of event classes.

An OEM approach results in a simulation design model that has a well-defined operational semantics, as
shown in (Wagner, 2017a). Such a model can, in principle, be implemented with any object-oriented (OO)
simulation technology. However, a straightforward implementation can only be expected from a technology
that implements the OEM&S paradigm, such as the OES JavaScript (OESjs) framework presented in (Wagner,
2017b).

The examples discussed in this tutorial, and their descriptions, are adopted from the excellent Open Access book
Beyond Lean: Simulation in Practice by Standridge (2013).

1.1. Model-Driven Engineering

Model-Driven Engineering (MDE), also called model-driven development, is a well-established paradigm in
software engineering. Since simulation engineering can be viewed as a special case of software engineering, it is
natural to apply the ideas of MDE also to simulation engineering.

In MDE, there is a distinction between three kinds of models as engineering artifacts created in the analysis,
design and implementation phases of a development project:

1. domain models (also called conceptual models), which are solution-independent,
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2. design models, which represent platform-independent solution designs,

3. implementation models, which are platform-specific.

Domain models are solution-independent descriptions of a problem domain produced in the analysis phase.
A domain model may include both descriptions of the domain's state structure (in conceptual information
models) and descriptions of its processes (in conceptual process models). They are solution-independent, or
computation-independent, in the sense that they are not concerned with making any system design choices
or with other computational issues. Rather, they focus on the perspective and language of the subject matter
experts for the domain under consideration.

In the design phase, first a platform-independent design model, as a general computational solution, is
developed on the basis of the domain model. The same domain model can potentially be used to produce
a number of (even radically) different design models. Then, by taking into consideration a number of
implementation issues ranging from architectural styles, nonfunctional quality criteria to be maximized (e.g.,
performance, adaptability) and target technology platforms, one or more platform-specific implementation
models are derived from the design model. These one-to-many relationships between conceptual models, design
models and implementation models are illustrated in Figure 1-1.

Figure 1-1. From conceptualization via design to implementation

Different 
Platforms

Different 
Solutions 
(Design 
Choices)

Conceptual 
Model

Arena Model

Design Model 1

Design Model 2

Simio Model

AnyLogic Model

JaamSim Model
CC-BY Gerd Wagner

ImplementationDesignConceptualization

A model does not consist of just one model diagram including all viewpoints or aspects of the system to be
developed. Rather it consists of a set of models, one (or more) for each viewpoint. The two most important
viewpoints, crosscutting all three modeling levels: domain, design and implementation, are

1. information modeling, which is concerned with the state structure of the domain, design or
implementation;

2. process modeling, which is concerned with the dynamics of the domain, design or implementation.

1.2. Information Modeling with UML Class Diagrams

Conceptual information modeling is mainly concerned with describing the relevant entity types of a real-
world domain and the relationships between them, while information design and implementation modeling
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are concerned with describing the logical (or platform-independent) and platform-specific data structures (in
the form of classes) for designing and implementing a software system or simulation. The most important
kinds of relationships between entity types to be described in an information model are associations and
subtype/supertype relationships, which are called ‘generalizations’ in UML.

In UML Class Diagrams, an entity type is described with a name, and possibly with a list of properties and
operations (called methods when implemented), in the form of a class rectangle with one, two or three
compartments, depending on the presence of properties and operations. Integrity constraints, which are
conditions that must be satisfied by the instances of a type, can be expressed in special ways when defining
properties or they can be explicitly attached to an entity type in the form of an invariant box.

An association between two entity types is expressed as a connection line between the two class rectangles
representing the entity types. The connection line is annotated with multiplicity expressions at both ends. A
multiplicity expression has the form m..n where m is a non-negative natural number denoting the minimum
cardinality, and n is a positive natural number (or the special symbol * standing for unbounded) denoting
the maximum cardinality, of the sets of associated entities. Typically, a multiplicity expression states an
integrity constraint. For instance, the multiplicity expression 1..3 means that there are at least 1 and at most 3
associated entities. However, the special multiplicity expression 0..* (also expressed as *) means that there is
no constraint since the minimum cardinality is zero and the maximum cardinality is unbounded.

A good overview of the most recent version of UML (UML 2.5) is provided by www.uml-diagrams.org/uml-25-
diagrams.html.

1.3. Process Modeling with BPMN and DPMN

The Business Process Modeling Notation (BPMN) is an activity-based graphical modeling language for defining
business processes following the flow-chart metaphor. In 2011, the Object Management Group has released
version 2.0 of BPMN with an optional execution semantics based on Petri-net-style token flows.

The most important elements of a BPMN process model are listed in .

Name of element Meaning Visual symbol(s)

Event “Something that 'happens' during
the course of a process”, affecting
the process flow. “There are three
types of Events, based on when
they affect the flow”: a Start Event
is drawn as a circle with a thin
border line, while an Intermediate
Event has a double border line and
an End Event has a thick border
line.

Start Inter-
mediate

End

Activity “Work that is performed within
a Business Process”. A Task is
an atomic Activity, while a Sub-
Process is a composite Activity.
A Sub-Process can be either in a
collapsed or in an expanded view.

Activity
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Gateway A Gateway is a node for branching
or merging control flows. A
Gateway with an "X" symbol
denotes an Exclusive OR-Split
for conditional branching, if there
are 2 or more output flows, or an
Exclusive OR-Join, if there are 2
or more input flows. A Gateway
with a plus symbol denotes an
AND-Split for parallel branching,
if there are 2 or more output flows,
or an AND-Join, if there are 2 or
more input flows. A Gateway can
have both input and output flows.

Sequence Flow An arrow expressing the temporal
order of Events, Activities, and
Gateways. A Conditional Sequence
Flow arrow starts with a diamond
and is annotated with a condition
(in brackets).

[condition]

Data Object Data Objects may be associated
with Events or Activities,
providing a context for reading/
writing data. A unidirectional
dashed arrow denotes reading,
while a bidirectional dashed arrow
denotes reading/writing.

Event

data object

A good modeling tool, with the advantages of an online solution, is the Signavio Process Editor, which is free
for academic use (www.signavio.com/bpm-academic-initiative).

BPMN process diagrams can be used for making

1. conceptual process models , e.g., for documenting existing business processes and for designing new
business processes;

2. process automation models for specific process automation platforms (that allow partially or fully
automating a business process) by adding platform-specific technical details in the form of model
annotations that are not visible in the diagram.

However, the BPMN process diagram language has several semantic issues and is not expressive enough for
making platform-independent computational process design models that can be used both for designing DES
models and as a general basis for deriving platform-specific process automation models.

DPMN adapts the language of BPMN Process Diagrams for the purpose of simulation design modeling where a
process model must represent a computationally complete process specification. While large parts of BPMN’s
vocabulary, visual syntax and informal semantics can be preserved in DPMN, a number of modeling elements
need to be modified.

 Chapter 1. Introduction 4

http://www.signavio.com/bpm-academic-initiative


 Modeling and Simulation of Manufacturing Systems  

DPMN is a BPMN-based diagram language for making (computational) process design models for discrete
event simulation. It combines the intuitive flowchart modeling style of BPMN with the semantics provided by
the event scheduling arrows of Event Graphs (Schruben 1983) and the rigorous event-rule-based semantics of
the Object Event Modeling and Simulation paradigm (Wagner 2017a+2018b).

DPMN adopts and adapts the syntax and semantics of BPMN in the following way:

1. A DPMN diagram has an underlying UML class diagram defining its (object and event) types.

2. DPMN Sequence Flow arrows pointing to an event circle denote event scheduling. They must be
annotated by event attribute assignments for creating/scheduling a new event.

3. DPMN has three special forms of Text Annotation:

1. Text Annotations attached to Event circles for declaring event rule variables,

2. Text Annotations attached to Sequence Flow arrows pointing to Event circles for the occurrence
time or delay of the events to be scheduled,

3. Text Annotations attached to Sequence Flow arrows pointing to Event circles for event attribute
assignments.

4. DPMN has an extended form of Data Object visually rendered as rectangles with two compartments:

1. a first compartment showing an object variable name and an object type name separated by a
colon, together with a binding of the object variable to a specific object;

2. a second compartment containing a block of state change statements (such as attribute value
assignments).

5. DPMN has an extended form of Activity rectangles, which may include an Event circle for exposing the
activity's start event (type).

 Chapter 1. Introduction 5



 Modeling and Simulation of Manufacturing Systems  

Chapter 2. Single Workstation Systems

We consider a workstation (shown in Figure 2-1) that operates 168 hours per month. Customer demand per
month is 1680 parts or 10 parts per hour, resulting in a takt time of 6 minutes. The workstation's processing time
varies between 3 and 8 minutes with a mode of 4 minutes. Inbound arrival of parts cannot be controlled, and is,
consequently, subject to great variations.

Figure 2-1. A workstation with an input buffer for waiting parts.

2.1. Conceptual Model 1: Based on Objects and Events

Single workstation systems contain two types of objects: workstations and parts to be processed. They can be
described with the help of four types of instantaneous events:

1. Part arrivals: a part arrives at a workstation

2. Processing starts: the processing of a part at a workstation starts

3. Processing ends: the processing of a part at a workstation ends

4. Part departures: a part departs from a workstation

These two object types and four event types can be included in a UML class diagram expressing a conceptual
information model, as shown in Figure 2-2.
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Figure 2-2. A conceptual information model of a single workstation system.

«object type»
workstations

«object type»
parts

0..1

waiting parts

*

«event type»
part arrivals

1

*

«event type»
part departures

*

1

*

*

«event type»
processing starts

*
«event type»

processing ends
*

*

*

Notice that the association between the object types workstations and parts defines an input buffer waiting parts
for workstations. The associations between event types and object types define the participation of objects in
events. For instance, both a part and a workstation participate in a part arrival event.

The conceptual process model shown in Figure 2-3 is based on the object and event types defined in the UML
Class Diagram of Figure 2-2.

Figure 2-3. A conceptual process model of a single workstation system.

part departurepart arrival

workstationinput
buffer

processing
start

processing
end

add part to

get part from

remove part

input buffer
not empty

WS available

2.2. Conceptual Model 2: Based on Objects, Events and Activities

Conceptually, an activity is a composite event that is temporally framed by a pair of start and end events.
Consequently, whenever a model contains a pair of related start and end event types, like processing start and
processing end in the models of Figure 2-2 and Figure 2-3, they can be replaced with a corresponding activity
type, like processing, as shown in Figure 2-4 and Figure 2-5.
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Figure 2-4. A conceptual information model of object, event and activity types.

«activity type»
processing

«object type»
parts

«object type»
workstations

0..1

waiting parts

*

«event type»
part arrivals

1

*

1*

*

*

«event type»
part departures

*

*

Figure 2-5. A conceptual process model based on events and activities.

part departurepart arrival

workstationinput
buffer

processing

add part to

get part from

remove part
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input buffer
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2.3. Making Design Models

As a simulation design choice, we may define the workstation's processing time to be triangularly distributed
with a mode of 4 minutes, a minimum of 3 minutes and a maximum of 8 minutes. Notice that the triangular
distribution is typically used when no data is available except (estimates of) the minimum, maximum and mean
(or mode). The fact that inbound arrival of parts is not well controlled can be modeled by assuming the practical
worst case represented by an exponential distribution with a mean equal to the takt time of 6 minutes.

Not all object types and event types described in the conceptual model of Figure 2-2 need to be included in a
simulation design model. For simplification, we may drop either the part departure or the processing end event
types since events of these two types can be considered to temporally coincide and, thus, one of them may be
merged into the other one.

Further simplification options are (a) abstracting away from individual parts and the (composition of the)
input buffer, and (b) dropping processing start events, which is possible because any processing start event
immediately follows either a part arrival or a processing end event.
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In our first design model, developed in Section 2.3.1, we adopt both simplifications, resulting in a minimal
model. In our second design model, developed in Section 2.3.2, we keep the processing start events, but
still abstract away from individual parts, only considering the length of the input buffer. Both models allow
computing buffer length statistics, but not the mean time a part spends in the system. For being able to compute
this statistics, we may choose to model individual parts and the composition of the input buffer (typically, as a
first-in-first-out buffer), as we do in our third design model discussed in Section 2.3.3.

2.3.1. Design Model 1.1: Abstracting away from individual parts and processing start
events

For making a simulation design model for the single workstation system described in the conceptual model
presented in Section 2.1, a possible simplification, and simulation design choice, is to abstract away from
individual parts and the composition of the input buffer, and instead only consider the length of the input buffer.

There are two situations when processing can be started: either when the input buffer is empty and a new
part arrives, or when the input buffer is not empty and processing ends. Therefore, any processing start event
immediately follows either a part arrival or a processing end event, and we may abstract away from processing
start events and drop the corresponding event type from the design model.

These two simplifications result in the simulation design model shown in Figure 2-6 and Figure 2-7.

Figure 2-6. Information design model 1.1 does neither consider individual parts nor processing start events.

«rv» processingTime() : Decimal {Exp(1/6)}

inputBufferLength : Integer

«object type»
WorkStation

«rv» recurrence() : Decimal {Tri(3,4,8)}

«exogenous event type»
PartArrival

*

«event type»
PartDeparture

*

1

A simulation information design model must distinguish between exogenous and caused (or endogenous) event
types. For any exogenous event type, the recurrence of events of that type must be specified, typically in the
form of a random variable, but in some cases it may be a constant (like 'on each Monday'). The recurrence
defines the elapsed time between two consecutive events of the given type (their inter-occurrence time). It
can be specified within the event class concerned in the form of a special method with the predefined name
recurrence.

Notice that the underlining of the random variate functions recurrence() and processingTime() in the class
diagram of Figure 2-6 means that they are defined as class-level (“static”) operations, which are invoked by
using the class name as a prefix, like in PartArrival.recurrence().
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Figure 2-7. Process design model 1.1 based on the information design model 1.1 shown above.

ws: WorkStation
[ws = a.workStation]
---------------------------

INCREMENT inputBufferLength

a:PartArrival

ws: WorkStation
[ws = pd.workStation]
---------------------------

DECREMENT inputBufferLength

pd:PartDeparture

workStation = ws

workStation = ws

[ws.inputBufferLength = 1]

+WorkStation.
processingTime() [ws.inputBufferLength > 0]

+WorkStation.
processingTime()

Each Event circle in a DPMN Process Diagram defines an event rule consisting of the Data Objects and the
outgoing event scheduling arrows attached to it. Each attached Data Object defines an object variable that is
bound to a specific object reference passed to the rule invocation via the triggering event expression. It allows
accessing the property values of the referenced object both for querying and changing the object state. The
second compartment of a DPMN Data Object contains one or more state change statements. All state change
statements specified in attached Data Objects are executed first, before any follow-up event is scheduled
according to the attached (possibly conditional) event scheduling arrows.

Our process design model 1.1, shown in Figure 2-7, defines two event rules:

1. On each part arrival, the input buffer length is incremented by 1 and, if it's equal to 1, a new
PartDeparture event is scheduled to occur with a delay provided by invoking the processingTime
function defined in the WorkStation object class.

2. On each part departure (or processing end), the input buffer length is decremented by 1 and, if the
input buffer length is still greater than 0, a new PartDeparture event is scheduled to occur with a delay
provided by invoking the function WorkStation.processingTime().

The following window allows running an implementation of design model 1.1.

iframe

The dynamics of a simulation model can be illustrated with the help of a simulation log that shows the sequence
of simulation steps of a particular run. Such a log can be created either manually (with paper and pencil), as
often taught in simulation courses, or with a simulation tool. The following log has been created by running an
OESjs implementation of design model 1.1 with a workstation that has initially 3 parts in its input buffer and
two initial events: an arrival event and a departure event, presented in Section A.1.
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Simulation Log

Time System State Future Events

20 87.88 workStation1{ bLen: 0} Arr@88.74

19 83.72 workStation1{ bLen: 1} Dep@87.88, Arr@88.74

18 77.62 workStation1{ bLen: 0} Arr@83.72

17 71.21 workStation1{ bLen: 1} Dep@77.62, Arr@83.72

16 65.97 workStation1{ bLen: 0} Arr@71.21

15 61.51 workStation1{ bLen: 1} Dep@65.97, Arr@71.21

14 60.28 workStation1{ bLen: 2} Dep@61.51, Arr@71.21

13 56.87 workStation1{ bLen: 1} Arr@60.28, Dep@61.51

12 52.04 workStation1{ bLen: 0} Arr@56.87

11 47.86 workStation1{ bLen: 1} Dep@52.04, Arr@56.87

10 47.02 workStation1{ bLen: 2} Dep@47.86, Arr@56.87

9 41.03 workStation1{ bLen: 1} Arr@47.02, Dep@47.86

8 40.08 workStation1{ bLen: 0} Arr@41.03

7 33.78 workStation1{ bLen: 1} Dep@40.08, Arr@41.03

6 24.93 workStation1{ bLen: 0} Arr@33.78

5 18.92 workStation1{ bLen: 1} Dep@24.93, Arr@33.78

4 12.79 workStation1{ bLen: 2} Dep@18.92, Arr@33.78

3 6.69 workStation1{ bLen: 3} Dep@12.79, Arr@33.78

2 6.25 workStation1{ bLen: 4} Dep@6.69, Arr@33.78

1 1 workStation1{ bLen: 3} Arr@6.25, Dep@6.69

0 0 workStation1{ bLen: 3} Arr@1, Dep@1
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Attention

A process model has to provide for the proper processing of simultaneous (or

parallel) events. Special attention is required in cases of parallel events for which

different processing orders yield different results.

In the case of model 1.1, there may be situations with parallel arrival and departure

events. Such situations are more likely when the granularity of simulation time is

low, as in models with discrete time. For instance, using a discrete time model,

there may be event pairs like {PartArrival@3, PartDeparture@3} in the Future

Events List. However, this does not create any problem for model 1.1, since both

possible parallel event processing orders yield the same successor simulation state,

as shown below.

A particular processing order for a set of parallel events is called a parallel event serialization (PES). A process
model is PES-independent if for any set of parallel events scheduled during a simulation run, i.e., added to the
Future Events List (FEL), their processing order doesn't matter, that is, different serializations do not create
different successor simulation states. This is a desirable property for a process model. If a process model is not
PES-independent, one may have to define processing order priorities for event types in order to achieve the
intended effects of a set of parallel events.

The process model defined by Figure 2-7 is PES-independent. This can be proven by considering a simulation
state with a set of current events to be processed by the simulator and then show that all possible serializations
yield the same successor simulation state. Let's consider the simulation state SS = #{inputBufferLength:1},
{A@3, D@3}# at simulation time 3, where S={inputBufferLength:1} represents the system state and FEL =
{A@3, D@3} represents the Future Events List. There are two possible serializations of the parallel events
in FEL: #A@3, D@3# and #D@3, A@3#. For the first of them we obtain the following sequence of rule
applications:

1. SS' = r1(SS) = #{inputBufferLength:2}, {D@3, A@6}#, assuming that invoking

PartArrival.recurrence() returns 3 as the delay for the next arrival event.

2. SS'' = r2(SS') = #{inputBufferLength:1}, {A@6, D@5}#, assuming that invoking

WorkStation.processingTime() returns 2 as the delay for the next departure event.

The second serialization yields

1. SS' = r2(SS) = #{inputBufferLength:0}, {A@3, D@5}#, assuming that invoking

WorkStation.processingTime() returns 2 as the delay for the next departure event .

2. SS'' = r1(SS') = #{inputBufferLength:1}, {D@5, A@6}#, assuming that invoking

PartArrival.recurrence() returns 3 as the delay for the next arrival event.

For both serializations, the resulting simulation state SS'' is the same.
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2.3.2. Design Model 1.2: Abstracting away from individual parts, only

Our second design choice is to keep the pair of processing start and end event types, while still abstracting away
from individual parts and the composition of the input buffer, and instead only considering the length of the
input buffer. This choice results in the design model 1.2 shown in Figure 2-8 and Figure 2-9.

Figure 2-8. An information design model that does not consider individual parts.

inputBufferLength : Integer
status : WorkstationStatusEL

«object type»
WorkStation

«rv» recurrence() : Decimal {Tri(3,4,8)}

«exogenous event type»
PartArrival

*

«rv» processingTime() : Decimal {Exp(1/6)}

«event type»
ProcessingStart

«event type»
ProcessingEnd

*

*

1

AVAILABLE
BUSY

«enumeration»
WorkstationStatusEL

Figure 2-9. A process design model based on the previous class diagram.

ws: WorkStation
[ws = a.workStation]
---------------------------

INCREMENT
inputBufferLength

a:PartArrival

ws: WorkStation
[ws = pe.workStation]
---------------------------

DECREMENT inputBufferLength
IF inputBufferLength = 0

THEN status := AVAILABLE

pe:ProcessingEnd

ps:Processing
Start

workStation = ws workStation =
ps.workStation

workStation = ws

ws: WorkStation
[ws = ps.workStation]

-----------------------
status := BUSY

+ProcessingStart.
processingTime()

[ws.inputBufferLength > 0]

[ws.status = AVAILABLE]

The process design model of Figure 2-9 defines three event rules:
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1. On each part arrival, the input buffer length is incremented by 1 and if the workstation's status is
AVAILABLE, then a new ProcessingStart event is scheduled to occur immediately.

2. On each processing start, the workstation's status is changed to BUSY and a new ProcessingEnd event
is scheduled to occur with a delay provided by invoking the processingTime function defined in the
ProcessingStart event class.

3. On each processing end, the input buffer length is decremented by 1 and, if the input buffer length is still
greater than 0, a new ProcessingStart event is scheduled to occur immediately, otherwise (if the input
buffer is empty) the workstation's status is changed to AVAILABLE.

The following simulation log has been created by running an OESjs implementation of design model 1.2 with
an initially busy workstation having 3 parts in its input buffer and two initial events: an arrival event and a
processing start event, presented in Section A.2. The workstation attribute status has the possible values 1 for
"available" and 2 for "busy".

Simulation Log

Time System State Future Events

21 47.49 workStation1{ bLen: 1,
status: 2}

Start@47.5, Arr@49.97

20 44.99 workStation1{ bLen: 2,
status: 2}

End@47.49, Arr@49.97

19 42.44 workStation1{ bLen: 1,
status: 2}

Arr@44.99, End@47.49

18 42.43 workStation1{ bLen: 1,
status: 2}

Start@42.44, Arr@44.99

17 38.25 workStation1{ bLen: 2,
status: 2}

End@42.43, Arr@44.99

16 38.24 workStation1{ bLen: 2,
status: 2}

Start@38.25, Arr@44.99

15 35.14 workStation1{ bLen: 3,
status: 2}

End@38.24, Arr@44.99

14 34.72 workStation1{ bLen: 2,
status: 2}

Arr@35.14, End@38.24

13 33.79 workStation1{ bLen: 1,
status: 2}

Arr@34.72, End@38.24

12 33.78 workStation1{ bLen: 1,
status: 1}

Start@33.79, Arr@34.72

11 29.22 workStation1{ bLen: 0,
status: 1}

Arr@33.78

10 24.97 workStation1{ bLen: 1,
status: 2}

End@29.22, Arr@33.78
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Simulation Log

Time System State Future Events

9 24.96 workStation1{ bLen: 1,
status: 2}

Start@24.97, Arr@33.78

8 18.95 workStation1{ bLen: 2,
status: 2}

End@24.96, Arr@33.78

7 18.94 workStation1{ bLen: 2,
status: 2}

Start@18.95, Arr@33.78

6 12.81 workStation1{ bLen: 3,
status: 2}

End@18.94, Arr@33.78

5 12.8 workStation1{ bLen: 3,
status: 2}

Start@12.81, Arr@33.78

4 6.7 workStation1{ bLen: 4,
status: 2}

End@12.8, Arr@33.78

3 6.69 workStation1{ bLen: 4,
status: 2}

Start@6.7, Arr@33.78

2 6.25 workStation1{ bLen: 5,
status: 2}

End@6.69, Arr@33.78

1 1 workStation1{ bLen: 4,
status: 2}

Arr@6.25, End@6.69

0 0 workStation1{ bLen: 3,
status: 2}

Arr@1, Start@1

Attention

In this model, part arrivals and processing end events may occur simultaneously,

such that the model must make sure that not both of these events schedule a new

processing start event. Indeed, their event rules make sure that in any case only

one of them can schedule a new processing start event, and both possible event

processing orders yield the same successor simulation state. We can show that the

process model defined by Figure 2-9 is PES-independent in a similar way as in

Section 2.3.1.

2.3.3. Design Model 1.3: Considering individual parts and their Mean Time in System

For being able to compute the Mean Time in System (also called Manufacturing Lead Time) of parts, we need
to record the arrival time of a part. A simple solution is to record the arrival time of a part as the value of an
attribute arrivalTime defined in an object class Part, as in the model of Figure 2-10.
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Figure 2-10. An information design model with a waitingParts input buffer.

status : WorkstationStatusEL

«object type»
WorkStation

arrivalTime : Decimal

«object type»
Part

0..1

waitingParts

*
{ordered}

«rv» recurrence() : Decimal {Tri(3,4,8)}

«exogenous event type»
PartArrival

1

*

1

*

«rv» processingTime() : Decimal {Exp(1/6)}

«event type»
ProcessingStart

«event type»
ProcessingEnd

*

*

AVAILABLE
BUSY

«enumeration»
WorkstationStatusEL

In this model, we have explicitly modeled the input buffer of a workstation in the form of an ordered multi-
valued reference property waitingParts, the values of which are ordered collections (e.g., array lists) of Part
objects. For changing the content of such a collection (representing a buffer), we can use the operations
push, which adds an item as the last item to the collection, and pop, which removes and returns the first item.
Notice that, unlike in the conceptual information model of Figure 2-2, there are no associations between
ProcessingStart/ProcessingEnd and Part. For simplicity, they have been dropped, since the information,
which part participates in an event of one of these two types is available via the participating workstation's
waitingParts buffer.

Figure 2-11. A process design model with a waitingParts input buffer.

ws: WorkStation
[ws = a.workStation]
---------------------------

waitingParts.push( a.part)

a:PartArrival

ws: WorkStation
[ws = pe.workStation]
---------------------------
waitingParts.pop()

IF waitingParts.length = 0
THEN status := AVAILABLE

pe:ProcessingEnd

ps:Processing
Start

workStation = ws workStation =
ps.workStation

ws: WorkStation
[ws = ps.workStation]

-----------------------
status := BUSY

[ws.waitingParts.length > 0]

+ProcessingStart.
processingTime()[ws.status = AVAILABLE]
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In the process design model shown in Figure 2-11, instead of incrementing/decrementing a queue length
variable, we now have to change the state of the input buffer ws.waitingParts by pushing a new part to it on
arrival of a new part, and by popping its first element when its processing ends. Thus, the state change language
consists of the two operations push and pop that operate on the ordered collection ws.waitingParts, the length of
which can be retrieved with the expression ws.waitingParts.length.

2.3.4. Design Model 2.1: Using a Processing activity

As discussed in Section 2.2, the pair of start and end event types ProcessingStart and ProcessingEnd in the
models of Figure 2-4 and Figure 2-5 can be replaced with an equivalent activity type Processing as shown in
the models of Figure 2-12 and Figure 2-13. Applying this replacement pattern leads to a conceptual and visual
simplification of the models concerned.

Figure 2-12. An information design model with a Processing activity type.

status : WorkstationStatusEL

«object type»
WorkStation

arrivalTime : Decimal

«object type»
Part

0..1

waitingParts

*
{ordered}

«rv» recurrence() : Decimal {Tri(3,4,8)}

«exogenous event type»
PartArrival

1

*

1

*

«rv» time() : Decimal {Exp(1/6)}

«activity type»
Processing

*

AVAILABLE
BUSY

«enumeration»
WorkstationStatusEL

Notice that we have refactored the function ProcessingStart.processingTime() to the shorter name
Processing.time().

In the process design model of Figure 2-13, we use the BPMN notation for text annotations for showing the
setting of the duration attribute of a Processing activity.
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Figure 2-13. A process design model with a Processing activity.

ws: WorkStation
[ws = a.workStation]
---------------------------

waitingParts.push( a.part)

a:PartArrival

ws: WorkStation
[ws = p.workStation]
-------------------------
waitingParts.pop()

IF waitingParts.length = 0
THEN status := AVAILABLE

duration = Processing.time()
workStation = ws

p:Processing

duration = Processing.time()
workStation = ws

ws: WorkStation
[ws = p.workStation]

-----------------------
status := BUSY

[ws.status = AVAILABLE]

[ws.waitingParts.length > 0]

Event scheduling arrows targeting an Activity rectangle refer to its (possibly explicit) Start Event circle.
For being able to specify an event rule for an activity's start event, we need to include an Event circle that
represents it in the left part of an Activity rectangle, as in Figure 2-13 where the event rule for the start event of
a Processing activity takes care that the status of the associated workstation is set to BUSY.

Since the occurrence time of an activity is its completion time, the state changes specified in a Data Object
attached to an Activity rectangle are applied when the activity's end event occurs. Likewise, any event
scheduling arrow that goes out of an Activity rectangle represents an event scheduling pattern triggered by the
end event of the activity concerned.

In general, since an Activity rectangle represents two implicit events, it can come with two event rules: one
for its (possibly explicit) start event and another one for its (implicit) end event, as in Figure 2-13. The start
event rule is defined by the Data Objects and event scheduling arrows attached to the included start Event circle,
if there is one. The end event rule is defined by the Data Objects and event scheduling arrows attached to the
Activity rectangle.

2.4. Modeling Detractors to Workstation Performance

There are three possible detractors to the performance of a workstation: (1) breakdowns, (2) defective parts,
and (3) workstation setup for different types of parts, which implies batch processing. These issues are briefly
discussed in the following sections.

Breakdowns

Machines periodically break down (e.g., on average once per week) and then have to be repaired before they
can resume their normal operation. This can be modeled by adding an exogenous Breakdown event type with
an exponentially distributed recurrence and an event rule that changes the workstation state from AVAILABLE
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or BUSY to BROKEN and schedules a RepairEnd event with a delay equal to the repair time, which may be
modeled as uniformly distributed between 30 minutes and 2 hours.

Defective parts

Parts that turn out to be defective after being processed need to be reworked. This can be modeled by adding an
attribute percentDefective to the object type Workstation and suitable logic to the Processing activity end event
rule such that in percentDefective % of all cases a processed part cannot depart the system (i.e., is not removed
from the input buffer), but is being reworked by another Processing activity.

Workstation setup

As they arrive, parts are gathered into a group called a batch until the number of parts in the group equals the
predetermined batch size. The newly formed batch enters the input buffer of the machine to wait for processing.
Processing the batch means first performing a setup operation on the machine and then processing all items
in the batch. This can be modeled by (1) adding the attributes batchSize and setupTime to the object type
Workstation and (2) modifying the condition for scheduling a Processing activity start event such that it only
starts, with a delay of setupTime, when the workstation's input buffer has been filled up to the required batch
size.

2.4.1. Design Model 2.2: Considering machine breakdowns

T.B.D

2.4.2. Design Model 2.3: Considering defective parts

T.B.D

2.4.3. Design Model 2.4: Considering workstation setup

T.B.D
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Chapter 3. Serial Manufacturing Systems

In many cases, multiple workstations are required to perform all operations necessary to produce a finished
product. When this can be accomplished by processing all items in the same sequence, a set of single
workstations organized into a serial line is appropriate, possibly with a material handling device moving items
between the workstations.

The simplest case of a serial manufacturing system is a series of two workstations, which is considered in .

A serial manufacturing system of length n can be modeled either with n workstation types such that each type
of non-terminal workstation WS has another workstation type WS’ as the type of successor workstations of
workstations of type WS, or in a generic way such that the model does not depend on n. A generic model,
abstracting away from the possibility of blocking created by full input buffers, is presented in .

3.1. Design Model 3.1: A Series of Two Workstations

The simplest case of a serial manufacturing system is a series of two workstations, such as one for component
placement followed by another one for solder reflow, as described in the (incomplete) information model of
Figure 3-1 and in the (incomplete) process model of Figure 3-2.

Figure 3-1. An information design model for a series of two workstations.

«rv» duration() : Decimal {U(0.7, 4.7)}

«activity type»
ComponentPlacement

«object type»
CP-Workstation

arrivalTime : Decimal

«object type»
Part

0..1

waitingParts *
{ordered}

«rv» recurrence() : Decimal {Exp(1/3)}

«exogenous event type»
PartArrival

1

*

1*

1

*

«object type»
SR-Workstation

1

successor

1

«rv» duration() : Decimal {U(0.7, 4.7)}

«activity type»
SolderReflow

0..1

waitingParts

*
{ordered}

1

*

According to this information design model, each workstation (type) is associated with its own type of activity
(ComponentPlacement and SolderReflow), and a solder reflow workstation is defined to be the successor of a
component placement workstation.
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Figure 3-2. An attempt of a process design model for a series of two workstations.

ws: CP-Workstation
[ws = a.workStation]
--------------------------

ws.waitingParts.
push( a.part)

a:PartArrival

ws: CP-Workstation
[ws = cp.workStation]
----------------------------

ws.successor.waitingParts.
push( ws.waitingParts.pop())

cp: Component
Placement sr: SolderReflow

ws: SR-Workstation
[ws = sr.workStation]
-------------------------

ws.waitingParts.pop()

duration =
ComponentPlacement.duration()
workStation = ws duration =

SolderReflow.duration()
workStation = ws

[ws.waitingParts.
length = 1]

[ws.successor.
waitingParts.
length = 1]

[ws.waitingParts.
length > 0]

[ws.waitingParts.
length > 0]

Notice how a part is removed from the input buffer of the first workstation and forwarded to the second
workstation with the state change statement

ws.successor.waitingParts.push( ws.waitingParts.pop())

in the Data Object attached to the ComponentPlacement activity.

The models of Figure 3-2 and Figure 3-2 are incomplete since they do not model the fact if a workstation is
available or busy, which is needed for synchronizing

3.2. A Generic Model of Workstations in a Series without Blocking

In the generic models presented in Figure 3-3 and in Figure 3-4, we assume that the input buffers of
workstations have an unlimited capacity such that an arrived or processed part can always be added to the input
buffer of the successor workstation. A more realistic model, where input buffers have a limited capacity and a
workstation can be blocked by a full input buffer of its successor, is presented in

Notice that for controlling a series of workstations, the status information whether a workstation is busy
or available is needed. These two status values are defined as enumeration literals in an enumeration
WorkstationStatusEL, which is defined as the range of the enumeration attribute status.
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Figure 3-3. A generic information design model for any series of workstations.

0..1

successor

0..1

status : WorkstationStatusEL

«object type»
WorkStation

arrivalTime : Decimal

«object type»
Part

0..1

waitingParts

*
{ordered}

«rv» recurrence() : Decimal {Tri(3,4,8)}

«exogenous event type»
PartArrival

1

*

1

*

«rv» time() : Decimal {Exp(1/6)}

«activity type»
Processing

*

AVAILABLE
BUSY

«enumeration»
WorkstationStatusEL

The information design model shown in Figure 3-3 allows connecting any number of workstations in a series
with the help of a one-to-one successor association defining an optional successor property for workstations.

In the process design model of Figure 3-4, the Event circle within the Activity rectangle denotes the Activity's
start event. It allows expressing an on-activity-start event rule for setting the affected workstation's status
attribute to BUSY.

Figure 3-4. A generic process design model for any series of workstations.

ws: WorkStation
[ws = a.workStation]
---------------------------

waitingParts.push( a.part)

a:PartArrival

ws: WorkStation
[ws = p.workStation]

part: Part
---------------------------

part := waitingParts.pop()
IF successor THEN successor.waitingParts.push( part)
IF waitingParts.length = 0 THEN status := AVAILABLE

duration = Processing.time()
workStation = ws

duration = Processing.time()
workStation = ws

duration = Processing.time()
workStation = ws'

ws: WorkStation
[ws = p.workStation]

-----------------------
status := BUSY

p:Processing

[ws.waitingParts.length > 0]

[ws.status = AVAILABLE]
[ws'.status = AVAILABLE]
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The state change script of the ws:WorkStation Data Object attached to the Processing activity (end event)
consists of the following three statements:

1

2

3

part := waitingParts.pop()

IF successor THEN successor.waitingParts.push( part)

IF waitingParts.length = 0 THEN status := AVAILABLE

The first state change statement removes the next part to be processed from the input buffer and stores it in the
variable part. The second one checks if the workstation has a successor workstation and then adds the part its
input buffer. The third one sets the status attribute to AVAILABLE, if the workstation's input buffer is empty.

3.3. A Generic Model of Workstations in a Series with Blocking

Whenever the input buffer of the following workstation is full, the preceding station cannot forward the
completed part and begin working on another. In this case, the workstation is blocked, which can be modeled by
assigning it a status of BLOCKED and by adding suitable logic to the Processing activity end event rule such
that a blocked preceding workstation will be ‘unblocked’ when a workstation's input buffer is decreased from
maximum length.

The possibility of blocking is accommodated by adding an enumeration literal BLOCKED to the enumeration
WorkstationStatusEL, as shown in Figure 3-5.

Figure 3-5. A generic information design model for any series of workstations with blocking.

predecessor 0..1

successor

0..1

status : WorkstationStatusEL

«object type»
WorkStation

arrivalTime : Decimal

«object type»
Part

0..1

waitingParts

*
{ordered}

«rv» recurrence() : Decimal {Tri(3,4,8)}

«exogenous event type»
PartArrival

1

*

1

*

«rv» time() : Decimal {Exp(1/6)}

«activity type»
Processing

*

AVAILABLE
BUSY
BLOCKED

«enumeration»
WorkstationStatusEL

The information design model now allows a successor workstation to access its predecessor workstation via a
one-to-one predecessor-successor association and the implied predecessor property. This is needed because a
successor workstation has to unblock its predecessor workstation when its input buffer is no longer full.

In the process design model of Figure 3-6, the Event circle within the Activity rectangle denotes the Activity's
start event. It allows expressing an on-activity-start event rule.
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Figure 3-6. A generic process design model for any series of workstations with blocking.

ws: WorkStation
[ws = a.workStation]
---------------------------

waitingParts.push( a.part)

a:PartArrival

ws: WorkStation
[ws = p.workStation]

part: Part
---------------------------

part := waitingParts.pop()
IF successor THEN {

successor.waitingParts.push( part)
If successor.waitingParts.length = successor.bufferCapacity THEN status := BLOCKED }

IF waitingParts.length = 0 THEN status := AVAILABLE
ELSE IF waitingParts.length = bufferCapacity-1 THEN predecessor.status := AVAILABLE

duration = Processing.time()
workStation = ws

duration = Processing.time()
workStation = ws

duration = Processing.time()
workStation = ws.successor

ws: WorkStation
[ws = p.workStation]

-----------------------
status := BUSY

p:Processing

[ws.successor.status = AVAILABLE]
[ws.status = AVAILABLE]

[ws.waitingParts.length > 0]

The state change script of the ws:WorkStation Data Object attached to the Processing activity (end event)
consists of the following statements:

1

2

3

4

5

6

7

part := waitingParts.pop()

IF successor THEN { 

  successor.waitingParts.push( part)

  IF successor.waitingParts.length = successor.bufferCapacity THEN status := BLOCKED

}

IF waitingParts.length = 0 THEN status := AVAILABLE

ELSE IF waitingParts.length = bufferCapacity-1 THEN predecessor.status := AVAILABLE

The first statement removes the next part to be processed from the input buffer and stores it in the variable
part.

The second statement (lines 2-5) checks if the workstation has a successor workstation and then adds the part to
its input buffer and sets the status attribute to BLOCKED if the successor workstation's input buffer is full.

The third statement (lines 6-7) sets the status attribute to AVAILABLE, if the workstation's input buffer is
empty. Otherwise, if the workstation's input buffer length has decreased from maximum length to maximum
length minus 1, then the status attribute of the predecessor workstation is set to AVAILABLE.
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Chapter 4. Job Shops

T.B.D.
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Appendix A. Simulation with OESjs

OESjs is a web-based simulation framework that implements the Object Event Simulation (OES) paradigm.
OESjs is used on the Simulation for Education website. It can be downloaded from https://sim4edu.com/
downloads.

A.1. Implementing Design Model 1.1

Design model 1.1, presented in , defines one object type, WorkStation, and two event types, PartArrival
and PartDeparture. It can be run as an OESjs online simulation at https://sim4edu.com/sims/101.

Figure A-1. Process design model 1.1.

ws: WorkStation
[ws = a.workStation]
---------------------------

INCREMENT inputBufferLength

a:PartArrival

ws: WorkStation
[ws = pd.workStation]
---------------------------

DECREMENT inputBufferLength

pd:PartDeparture

workStation = ws

workStation = ws

[ws.inputBufferLength = 1]

+WorkStation.
processingTime() [ws.inputBufferLength > 0]

+WorkStation.
processingTime()

An OESjs simulation consists of a simulation.js file that essentially defines simulation parameters and
an initial state for a model, which is coded in a number of object class files and event class files, such as
WorkStation.js, PartArrival.js and PartDeparture.js.

In OESjs, an object type like WorkStation is implemented as a class that extends the predefined class oBJECT
in a class definition file like WorkStation.js, as shown in the following program listing:

1

2

3

4

5

6

7

8

9

10

11

var WorkStation = new cLASS({

  Name: "WorkStation",

  label: "Workstations",

  supertypeName: "oBJECT",

  properties: {

    "inputBufferLength": { range: "NonNegativeInteger",

        label: "Input buffer length", shortLabel: "bLen"},

    "currentProcessingTime": {range: "Decimal"}

  }

});

WorkStation.processingTime = function () {
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12

13

  return rand.exponential(1/6);

};

In addition to the attribute inputBufferLength, as specified in the class diagram of Figure 2-6, the object
type WorkStation also defines an attribute currentProcessingTime, which is used for the purpose of
computing the utilization statistics.

The two event types, PartArrival and PartDeparture, are implemented as classes that extend the
predefined class eVENT in corresponding class definition files. The contents of PartArrival.js is shown in
the following program listing:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

var PartArrival = new cLASS({

  Name: "PartArrival",

  label: "Part arrivals",

  supertypeName: "eVENT",

  properties: {

    "workStation": {range: "WorkStation", label:"Workstation"}

  },

  methods: {

    "onEvent": function () {

      ...

    }

  }

});

PartArrival.recurrence = function () {

  return rand.triangular( 3, 8, 4);  // min,max,mode

};

In OESjs, any event class must have an "onEvent" method, which implements the event routine of the event
type's event rule. This method is invoked by the simulator when an event of that type is processed. In the case of
the event type PartArrival, the code of its event routine is

1

2

3

4
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6

7

8

9
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14

15

16

17

18

"onEvent": function () {

  var events=[], ws = this.workStation;

  // add part to buffer

  ws.inputBufferLength++;

  // update statistics

  sim.stat.arrivedParts++;

  // if the work station is available

  if (ws.inputBufferLength === 1) {

    // compute random processing time

    ws.currentProcessingTime = WorkStation.processingTime();

    // schedule the part's departure event

    events.push( new PartDeparture({

      delay: ws.currentProcessingTime,

      workStation: ws

    }));

  }

  return events;

}
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The contents of PartDeparture.js is shown in the following program listing:

1

2
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5
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7

8

9
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20
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var PartDeparture = new cLASS({

  Name: "PartDeparture",

  label: "Part departures",

  supertypeName: "eVENT",

  properties: {

    "workStation": {range: "WorkStation", label:"Workstation"}

  },

  methods: {

    "onEvent": function () {

      var events=[], ws = this.workStation;

      // remove part from buffer

      ws.inputBufferLength--;

      // update statistics

      sim.stat.departedParts++;

      sim.stat.totalProcessingTime += ws.currentProcessingTime;

      // if there are still parts waiting

      if (ws.inputBufferLength > 0) {

        // compute random processing time

        ws.currentProcessingTime = WorkStation.processingTime();

        // schedule the next departure event

        events.push( new PartDeparture({

          delay: ws.currentProcessingTime,

          workStation: ws

        }));

      }

      return events;

    }

  }

});

A.2. Implementing Design Model 1.2

Design model 1.2, presented in Section 2.3.2, defines one object type, WorkStation, and three event types,
PartArrival, ProcessingStart and ProcessingEnd. It can be run as an OESjs online simulation at
https://sim4edu.com/sims/102.

A.3. Implementing Design Model 1.3

T.B.D.

A.4. Implementing Design Model 2.1

T.B.D.

A.5. Implementing Design Model 2.2

T.B.D.
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A.6. Implementing Design Model 2.3

T.B.D.

A.7. Implementing Design Model 2.4

T.B.D.

A.8. Implementing Design Model 8

T.B.D.

A.9. Implementing Design Model 9

T.B.D.
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Appendix B. Simulation with AnyLogic

AnyLogic is a simulation framework that supports the three modeling paradigms of DES, System Dynamics
(continuous state change modeling with differential equations), and object/agent-based modeling, and and their
combination.

AnyLogic DES models can be either event-based, using AnyLogic's Event or Dynamic Event from the Agent
Palette, or Processing-Network-based, using, for instance, Source, Service and Sink from their Process Modeling
Library.

B.1. Implementing Design Model 1.1

The simplest approach to event-based simulation with AnyLogic is to use the Event element from the Agent
Palette. However, the Event element does not support event types with properties. In example 1, this prevents
part arrival and departure events having a reference to a particular workstation as the value of a reference
property workStation, unlike what is specified by the design model shown in Figure B-1. We will therefore first
show how to make a simplified simulation model with PartArrival and PartDeparture modeled as Events
without a reference to a workstation, thus leaving the participating workstation implicit.

Figure B-1. Process design model 1.1.

ws: WorkStation
[ws = a.workStation]
---------------------------

INCREMENT inputBufferLength

a:PartArrival

ws: WorkStation
[ws = pd.workStation]
---------------------------

DECREMENT inputBufferLength

pd:PartDeparture

workStation = ws

workStation = ws

[ws.inputBufferLength = 1]

+WorkStation.
processingTime() [ws.inputBufferLength > 0]

+WorkStation.
processingTime()

Implementing a simplified version of design model 1.1 using AnyLogic's Event element

AnyLogic's Event element only supports simple event types without properties. Consequently, using it only
allows implementing a simplified version of the design model without workstation references.

After selecting the Agent Palette, drag-and-drop the Agent element, choose the option "A single agent", keep the
setting "I want to create a new agent type", call the resulting object type "WorkStation" and the resulting object
"workStation1", and click Finish. Then double-click the workStation1 object, such that the WorkStation
Agent Type tab is opened for defining the attribute inputBufferLength by dragging-and-dropping the
AnyLogic Variable element and setting its Type to "int".
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Right-click on the inputBufferLength attribute and choose "Create chart" and then "Create time plot" for
adding a variable monitor that will show a time series of the input buffer length values when the simulation is
executed.

Then drag-and-drop the Event element twice and call the resulting event types "PartArrival" and
"PartDeparture". Go on with defining these event types in the following way:

1. Click on PartArrival, choose "Timeout" as Trigger type, set Mode to "Cyclic" for defining events
of this type to be exogenous (i.e., recurring), with a "First occurrence time" of 1 and an expression
exponential(0.1666) as the value of "Recurrence time", and add the following Java statements in
the Action panel:

workStation1.inputBufferLength++;

if (workStation1.inputBufferLength == 1) {

  PartDeparture.restart( triangular( 3, 8, 4));

}

2. Click on PartDeparture, choose "Timeout" as Trigger type and set Mode to "User control" for
defining events of this type to be endogenous (i.e., caused by invoking AnyLogic's restart method),
and add the following Java statements in the Action panel:

workStation1.inputBufferLength--;

if (workStation1.inputBufferLength > 0) {

  PartDeparture.restart(triangular( 3, 8, 4));

}

After performing the above simulation definition steps, we see the defined elements in the Main Agent window,
as shown in Figure B-2.

Figure B-2. The Main Agent window showing the first AnyLogic implementation of design model 1.1.
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NOTICE

In AnyLogic, an object type is defined as an "Agent Type", and an object is defined

as an "Agent". A property of an object type is defined as a "Variable" of the "Agent

Type" concerned, if the property's value is changed by a state change statement of

an event rule. Otherwise, if the property's value is not changed during a simulation

run, it is defined as a "Parameter" of the "Agent Type" concerned.

An event type without properties can be implemented as an "Event", distinguishing

the following two cases:

1. For exogenous event types, set Trigger type to "Timeout" and Mode to

"Cyclic". Then, define the "First occurrence time" of an event of this type,

and set the "Recurrence time" to a fixed value or to a probability distribution

function such as exponential(0.5).

2. For other (caused) event types, set Trigger type to "Timeout" and Mode to

"User control", which means that events of such a type need to be scheduled

with AnyLogic's restart method.

Implementing design model 1.1 using AnyLogic's Dynamic Event element

AnyLogic's Dynamic Event element allows implementing an event type E with properties. A Dynamic
Event of type E has to be scheduled with a special method, which is automatically generated by AnyLogic
with the name "create_E", having two fixed parameters, the occurrence time and the time unit, followed by
parameters corresponding to the properties of the event type. For instance, the following method invocation
expression includes an occurrence time (obtained by invoking the exponential distribution function) and
the time unit MINUTE, followed by a reference to a particular WorkStation as arguments for invoking the
create_PartArrival method:

create_PartArrival( exponential(0.5), MINUTE, workStation1);

As in the implementation with Event elements described above, an object type WorkStation with an attribute
inputBufferLength has first to be defined and instantiated with an object workStation1. Also, as before, a
variable monitor for inputBufferLength is needed for obtaining a simulation output.

Then drag-and-drop the Dynamic Event element twice and call the resulting event types "PartArrival" and
"PartDeparture". Go on with defining these event types in the following way:

1. Click on PartArrival, define under "Arguments" the (constructor) parameter workStation of type
WorkStation, and add the following Java statements using this parameter in the Action panel:

workStation.inputBufferLength++;

if (workStation.inputBufferLength == 1) {

  create_PartDeparture( triangular(3,8,4), MINUTE, workStation);

}

// create next arrival event
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create_PartArrival( exponential(0.1666), MINUTE, workStation);

Notice that since a Dynamic Event does not allow a direct recurrence definition, it is necessary to
schedule the next event in the Action of that event type for keeping the flow of exogenous events going
on.

2. Click on PartDeparture, define under "Arguments" the property workStation of type
WorkStation, and add the following Java statements in the Action panel:

workStation.inputBufferLength--;

if (workStation.inputBufferLength > 0) {

  create_PartDeparture( triangular(3,8,4), MINUTE, workStation);

}

Finally, for any exogenous event type, like PartArrival, an initial event has to be scheduled in the "On
startup" action of Main:

// create first arrival event

create_PartArrival( 1, MINUTE, workStation1);

Notice that the initial PartArrival event refers to workStation1, which has been created as an object of
type WorkStation. For obtaining a simulation of two workstations operating in parallel, we would have to
create another WorkStation object, say workStation2, and also schedule a part arrival event for it, as in

// create first arrival event at workStation1

create_PartArrival( 1, MINUTE, workStation1);

// create first arrival event at workStation2

create_PartArrival( 1, MINUTE, workStation2);

B.2. Implementing Design Model 1.2

T.B.D.

B.3. Implementing Design Model 1.3

T.B.D.

B.4. Implementing Design Model 2.1

T.B.D.

B.5. Implementing Design Model 2.2

T.B.D.

B.6. Implementing Design Model 2.3

T.B.D.
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B.7. Implementing Design Model 2.4

T.B.D.

B.8. Implementing Design Model 8

T.B.D.

B.9. Implementing Design Model 9

T.B.D.
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